Chapter3 复变函数的积分

Chapter3: 复变函数的积分

复变函数的积分, 或简称 “复积分”, 是研究解析函数的一个重要工具. 在本章中, 我们将建立重要的 Cauchy 积分公式和 Cauchy 积分定理.

3.1 复积分的概念和性质

在实变函数中, 我们已经熟知, 积分概念涉及三个方面: 积分区间, 积分函数和积分微元. 现在, 在复变函数的情形中, 我们将对 “积分” 这一概念进行推广, 并且延申到复区域和复曲线上.

复变函数积分的定义

定义3.1.1 (有向曲线)

C C C 为复平面内的一条光滑 (或逐段光滑) 曲线. 规定它的一个方向, 称其为一条 有向曲线.

[注]

  • 曲线 C C C 有端点 ( A , B ) (A,B) (A,B) 时: 若规定走向为 A → B A\rightarrow B AB, 则记 A , B A,B A,B 分别为走向的起点和终点, 记为 C ( A , B ) C(A,B) C(A,B).
  • 曲线 C C C 封闭时, 一般依 “左手原则” 规定方向. 记 C + , C − C^{+}, C^{-} C+,C 为正反方向.

定义3.1.2 (积分)

C C C 为一条起点为 A A A, 终点为 B B B 的有向曲线, 且 f ( z ) f(z) f(z) 在曲线上有定义.

分割:

将曲线 C C C 划分为若干段: A = z 0 → z 1 → ⋯ → z n − 1 → z n = B A = z_0\rightarrow z_1\rightarrow\cdots \rightarrow z_{n-1} \rightarrow z_n = B A=z0z1zn1zn=B. 即: [ Z k , Z k + 1 ] , k ∈ [ n − 1 ] [Z_{k},Z_{k+1}], k\in [n-1] [Zk,Zk+1],k[n1].
任取 ξ k ∈ [ Z k , Z k + 1 ] \xi_{k} \in [Z_{k},Z_{k+1}] ξk[Zk,Zk+1]

求和:

作合式:
Δ = ∑ k = 0 n − 1 f ( ξ k ) Δ Z k = ∑ k = 0 n − 1 f ( ξ k ) ( Z k + 1 − Z k ) . \Delta = \sum_{k=0}^{n-1}f(\xi_{k})\Delta Z_{k} = \sum_{k=0}^{n-1}f(\xi_{k})(Z_{k+1} - Z_{k}). Δ=k=0n1f(ξk)ΔZk=k=0n1f(ξk)(Zk+1Zk).


取极限:

若对于 C C C 的任意划分 Δ k \Delta_{k} Δk 和任意选取的 ξ k \xi_{k} ξk, 和式 Δ \Delta Δ 趋向于某一常数 S S S, 则称 f f f 在有向曲线 C C C 上可积, 称 S S S f f f 在有向曲线 C C C 上的积分, 记为: S = ∫ C f ( z ) d z . S = \int_{C}f(z)dz. S=Cf(z)dz.

[注]

  • Δ k \Delta_k Δk ξ k \xi_k ξk 均为任意的.
  • 积分 S S S 和曲线 C C C 的起点,终点有关.
  • 在处理封闭曲线时, 可将它的起点和终点视为重合的.

定理3.1.1 (复变函数可积性判定和计算)

C C C 为复平面中的一条有向曲线, f f f 为定义在 C C C 上的连续函数, 则 f f f C C C 上可积, 且:
∫ C f ( z ) d z = ∫ C u ( x , y ) d x − v ( x , y ) d y + i ⋅ ∫ C v ( x , y ) d x + u ( x , y ) d y \int_{C}f(z)dz = \int_{C}u(x,y)dx - v(x,y)dy + i\cdot \int_{C}v(x,y)dx + u(x,y)dy Cf(z)dz=Cu(x,y)dxv(x,y)dy+iCv(x,y)dx+u(x,y)dy
= ∫ C ( u + i v ) ( d x + i d y ) = \int_{C}(u+iv)(dx + idy) =C(u+iv)(dx+idy)


复变函数积分的性质

复变函数的积分和与: 被积函数 和 积分曲线 两个要素密切相关.

  1. f , g f,g f,g 在有向曲线 C C C 上可积, 则 f , g f,g f,g 在复数域上经线性组合后所得函数 α f + β g ( α , β ∈ C ) \alpha f + \beta g (\alpha, \beta \in \mathbb{C}) αf+βg(α,βC) 在曲线上可积, 且满足:
    ∫ C ( α f + β g ) d z = α ∫ C f d z + β ∫ C g d z \int_{C}(\alpha f + \beta g)dz = \alpha \int_{C}fdz + \beta \int_{C}gdz C(αf+βg)dz=αCfdz+βCgdz
  2. f f f C C C 上可积, 则 f f f C − C^{-} C 上可积, 且满足:
    ∫ C f d z = − ∫ C − f d z . \int_{C}fdz = -\int_{C^{-}}fdz. Cfdz=Cfdz.
  3. 若曲线 C C C 由若干段 C 1 , C 2 , ⋯   , C n C_1, C_2, \cdots, C_n C1,C2,,Cn 组成, 且 f f f C C C 上可积, 则 f f f C C C 的每一段上均可积, 且满足:
    ∫ C f d z = ∑ i = 1 n ∫ C i f d z . \int_{C}fdz = \sum_{i=1}^{n}\int_{C_{i}}fdz. Cfdz=i=1nCifdz.
  4. f f f C C C 上可积, 且 ∣ f ( z ) ∣ ⩽ M |f(z)| \leqslant M f(z)M, C C C 的长度为 L L L, 则: (积分估值)
    ∣ ∫ C f ( z ) d z ∣ ⩽ M ⋅ L . |\int_{C}f(z)dz|\leqslant M\cdot L. Cf(z)dzML.

复变函数积分的计算

一般来说, 我们有三种方法计算复变函数的积分:

  1. 通过最基本的 “分割-求和-取极限” 的定义法计算积分.
  2. 利用积分微元公式:
    ∫ C f ( z ) d z = ∫ C u ( x , y ) d x − v ( x , y ) d y + i ⋅ ∫ C v ( x , y ) d x + u ( x , y ) d y . \int_{C}f(z)dz = \int_{C}u(x,y)dx - v(x,y)dy + i\cdot \int_{C}v(x,y)dx + u(x,y)dy. Cf(z)dz=Cu(x,y)dxv(x,y)dy+iCv(x,y)dx+u(x,y)dy.
  3. 若积分曲线 C C C 有参数表示:
    C = x ( t ) + i y ( t ) ,     t ∈ [ a , b ] C = x(t) + iy(t), ~~~ t\in [a,b] C=x(t)+iy(t),   t[a,b]
    则:
    ∫ C f ( z ) d z = ∫ C f ( z ( t ) ) d z ( t ) = ∫ a b f ( z ( t ) ) ( x ′ ( t ) + i y ′ ( t ) ) d t . \int_{C}f(z)dz = \int_{C}f(z(t))dz(t) = \int_{a}^{b}f(z(t))(x'(t) + iy'(t))dt. Cf(z)dz=Cf(z(t))dz(t)=abf(z(t))(x(t)+iy(t))dt.

3.2 Cauchy-Goursat 积分定理

f f f 为某个区域 D D D 内的解析函数, C C C D D D 内的一条有向曲线.

定义: f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x,y) + iv(x,y) f(z)=u(x,y)+iv(x,y)

⇒ ∫ C f ( z ) d z = ∫ C u ( x , y ) d x − v ( x , y ) d y + i ⋅ ∫ C v ( x , y ) d x + u ( x , y ) d y . \Rightarrow \int_{C}f(z)dz = \int_{C}u(x,y)dx - v(x,y)dy + i\cdot \int_{C}v(x,y)dx + u(x,y)dy. Cf(z)dz=Cu(x,y)dxv(x,y)dy+iCv(x,y)dx+u(x,y)dy.
f f f D D D 内解析: 它满足 Cauchy-Riemann 条件.

由以上讨论, 我们引入:


定理 3.2.1 (Cauchy-Goursat 定理)

f f f 在单连通区域 D D D 内解析, C C C D D D 内一条 简单闭曲线, 则 ∮ C f ( z ) d z = 0 \oint_{C}f(z)dz = 0 Cf(z)dz=0.

[注]

  1. “单连通” 是 不可删去 的必要条件.
  2. “解析” 这一条件可以减弱为 " f f f C C C 上连续".

定理 3.2.2 (复合闭路定理)

C C C 为多连通区域 D D D 内一条简单闭曲线, C 1 , C 2 , ⋯   , C n C_1, C_2, \cdots, C_n C1,C2,,Cn C C C 内部的 n n n 条简单闭曲线, 且它们 互不相交, 且 内部互不包含.
若以 C 1 , C 2 , ⋯   , C n C_1, C_2, \cdots, C_n C1,C2,,Cn 为边界的区域包含于 D D D 内, 则对于在 D D D 内解析的函数 f f f:
∮ C f ( z ) d z = ∑ i = 1 n ∮ C 1 f ( z ) d z \oint_{C}f(z)dz = \sum_{i = 1}^{n}\oint_{C_1}f(z)dz Cf(z)dz=i=1nC1f(z)dz

∮ C + C 1 − + ⋯ + C n − f ( z ) d z = 0. \oint_{C + C_1^{-} + \cdots + C_n^{-}}f(z)dz = 0. C+C1++Cnf(z)dz=0.


推论1.2.1

f f f 在区域 D D D 内解析, 简单闭曲线 C 1 , C 2 C_1, C_2 C1,C2 D D D 内, 且 C 2 C_2 C2 C 1 C_1 C1 内部. 则:
∫ C 1 f ( z ) d z = ∫ C 2 f ( z ) d z . \int_{C_1}f(z)dz = \int_{C_2}f(z)dz. C1f(z)dz=C2f(z)dz.
可见: C 1 , C 2 C_1, C_2 C1,C2 间存在某种形变关系.


定理3.2.3 (闭路形变原理)

f f f 在区域 D D D 内解析, C C C D D D 内一条简单闭曲线, 则无论 C C C 如何形变, 积分 ∮ C f ( z ) d z \oint_{C}f(z)dz Cf(z)dz 的值均保持不变.


3.3 Cauchy 积分公式: 原函数和不定积分

定理3.3.1 (Cauchy 积分公式)

f ( z ) f(z) f(z) C C C 内解析, C : ∣ z − z 0 ∣ = 1 C: |z - z_0| = 1 C:zz0=1. 则
f ( z 0 ) = 1 2 π i ∮ C f ( z ) z − z 0 d z . f(z_0) = \frac{1}{2\pi i} \oint_{C}\frac{f(z)}{z - z_0}dz. f(z0)=2πi1Czz0f(z)dz.

定理3.3.2 (高阶导数公式)

f ( z ) f(z) f(z) C C C 内解析, C : ∣ z = z 0 ∣ = 1 C: |z = z_0| = 1 C:z=z0=1. 则:
f ( n ) ( z 0 ) = n ! 2 π i ∮ C f ( z ) ( z − z 0 ) n + 1 d z . f^{(n)}(z_0) = \frac{n!}{2\pi i}\oint_{C}\frac{f(z)}{(z-z_0)^{n+1}}dz. f(n)(z0)=2πin!C(zz0)n+1f(z)dz.


3.4 解析函数和调和函数

定义3.4.1 (调和函数)

称满足 Laplace方程: f x x + f y y = 0 f_{xx} + f_{yy} = 0 fxx+fyy=0 的二元实函数 f ( x , y ) f(x,y) f(x,y)调和函数.

[注]

  1. 二元实函数 f ( x , y ) f(x,y) f(x,y) 在区域 D D D 内有二阶连续偏导数.
  2. 我们可以由推广到复平面上的 “调和函数” 概念得到判别复函数解析的 第三个充要条件:

定理3.4.2 (解析第三充要条件)

f ( z ) = u + i v f(z) = u+iv f(z)=u+iv D D D 上解析 ⇔ \Leftrightarrow u , v u,v u,v D D D 内满足 Laplace 方程, 且满足 Cauchy-Riemann 条件.


定理3.4.3

f f f D D D 内解析, 则其实部和虚部均为调和函数, 反之不然.


定义3.4.2 (共轭调和函数)

f = u + i v f = u+iv f=u+iv D D D 内解析, 称 v v v u u u共轭调和函数.

[注]

  1. “共轭调和关系” 显然不是等价关系, 不满足对称性.
  2. 求给定函数的共轭调和函数, 通常使用线积分法或偏积分法.

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值