【复变函数与积分变换】第二章 解析函数

§2.1  复变函数的概念、极限与连续性

1. 复变函数的概念

定义2.1  

设E为一复数集.若对E中的每一个复数 z=x+iy          ,按照某种法则f有确定的一个或几个复数                  与之对应,那么称复变数w是复变数z的函数(简称复变函数),记作

常也称w=f(z)为定义在E上的复变函数,其中E称为定义域,E中所有的z对应的一切w值构成的集合 称为f(z)的值域,记作 f(E) 或G.

若z的一个值对应着w的一个值,则称复变函数 f(z)是单值的;若z的一个值对应着w的两个或两个以上的值,则称复变函数 f(z)是多值的.

复数z=x+iy与 w=u+iv分别对应实数对 (x,y)和 (u,v),对于函数w=f(z),u、v为x、y 的二元实数函u(x,y)和v(x,y),所以w=f(z)又常写成w=u(x,y)+iv(x,y)。

解:

z平面上的直线x=1对应于w平面上的曲线

  设函数w=f(z)定义在E上,值域为G.若对于G中的任一点w,在E中存在一个或几个点z与之对应,则在G上确定了一个单值或多值函数,记作z=f-1(w),它就称为函数w=f(z)的反函数.

2.复变函数的极限

 

几何意义

   当变点 z 进入z0的充分小的去心邻域时,它的象点 f(z) 就落入A的一个预先给定的邻域内.

 定义中z趋于z0的方式是任意的,也就是说,z在z0的去心邻域内沿任何曲线以任何方式趋于z0时,f(z)都要趋向于同一个常数A.

定理2.1

再证充分性.

定理2.2

 若两个函数f(z)和g(z)在点z0处有极限,则其和、差、积、商(要求分母不为零)在点z0处的极限仍存在,并且极限值等于f(z)、g(z)在点z0处的极限值的和、差、积、商.

解: (1)方法一

方法2

(2)方法一

让z沿直线y=kx趋向于0,有

(2)方法二

.

3.复变函数的连续性

例2.3  讨论函数argz的连续性.

解:当z=0时, arg z无定义,因而不连续.

当z0为负实轴上的点时,即z0=x0<0,则

arg z在负实轴上不连续.

若z0=x0+iy0不是原点也不是负实轴及虚轴上的点

arg z在除去原点和负实轴及虚轴的复平面上连续.

当z0为正、负虚轴上的点z0=iy0(y0≠0)时

因此arg z在复平面上除了原点和负实轴外连续.

arg z在虚轴上也连续.

§2.2  解析函数的概念

1.复变函数的导数解:当z≠0 时,

函数在整个z 平面上除去原点外处处可导.

解:令z=x+iy,

函数在整个z平面上处处不可导.

若可导则连续

即f(z)在z0连续.

常用的求导公式与法则

(5)

2.解析函数的概念

定义2.6  

   若函数f(z)在点z0及z0的邻域内处处可导,则称函数f(z)在点z0解析.若函数f(z)在区域D内每一点都解析,则称函数f(z)在区域D内解析,或称f(z)是D内的解析函数.

      若f(z)在点z0不解析,但在z0的任一邻域内总有f(z)的解析点,则称z0为f(z)的奇点.

例2.7  研究函数f(z)=zRe(z)的解析性.

函数仅在z=0处导数存在. 它在z平面上处处不解析.

§2.3  函数可导与解析的充要条件

证明:先证必要性.设f(z)在区域D内一点z=x+iy可导,根据二元实函数微分的定义可知,u(x,y)与v(x,y)在点(x,y)可微,并且有

由于u(x,y)、v(x,y)满足柯西-黎曼方程,故有

说明函数f(z)=u(x,y)+iv(x,y)在点z=x+iy可导.

函数导数公式有如下四种形式:

定理2.8

 函数f(z)=u(x,y)+iv(x,y)在区域D内解析的充要条件是

(1) 二元实函数u(x,y)和v(x,y)在D内可微;

(2) u(x,y),v(x,y)在D内满足柯西-黎曼方程.

推论2.1  

若u(x,y)与v(x,y)的一阶偏导在点(x,y)(或区域D内)存在而且连续,并满足柯西-黎曼方程,则f(z)在点(x,y)可导(在区域D内解析).

解:(1) 设z=x+iy,则f(z)= Im (z)=y.

u(x,y)=y, v(x,y)=0都在复平面上可微.

u(x,y),v(x,y)在平面上每一点都满足柯西-黎曼方程,所以f(z)在复平面上解析

§2.4  初等函数

1.指数函数

2.对数函数

复对数函数的性质

对于等式左边的多值函数的任一个值,等式右边的两个多值函数一定各有一个适当的值与之对应,使等式成立,反之亦然.也就是说,等式两端可能取值的函数值的全体是相同的.

以n=2时为例进行说明。

对数函数的解析性

      对数函数 w=Lnz 的主值分支lnz=ln|z|+iargz,其实部ln|z| 在复平面上除去原点外都是连续的,虚部argz在负实轴和原点不连续

lnz在复平面上除去原点和负实轴外处处解析. 同理可知,Lnz的各个分支在复平面上除去原点和负实轴外也是处处解析的.

3.幂函数

它是复平面内的单值解析函数.

对每个确定的k,函数对应着的一个分支. 函数的各个分支在除去原点和负实轴的复平面上也是解析的,并且具有相同的导数。

4.三角函数与反三角函数

性质

(4)三角恒等式成立(6) 无界性:复变函数sinz,cosz在复平面上是无界函数.

取z=iy(y>0),只要y充分大,cosy就可以大于一个预先给定的正数.

其它三角函数定义如下:

例2.14  求函数cosz在z=1+i的值.

     三角函数可以用指数函数表示,由于对数函数是指数函数的反函数,所以反三角函数作为三角函数的反函数可以用对数表示.

z=sinw


资料仅供学习使用

如有错误欢迎留言交流

金港考研周导师的其他专栏:

光电融合集成电路技术

C语言

单片机原理

模式识别原理

数字电子技术

自动控制原理传感器技术

模拟电子技术

数据结构

 概率论与数理统计

高等数学

传感器检测技术

智能控制

嵌入式系统

图像处理与机器视觉

热工与工程流体力学

数字信号处理

线性代数

工程测试技术

金港考研周导师了解更多

  • 24
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值