复变函数论(三)-复变函数的积分01:复积分的概念及其简单性质

复变函数的积分是解析函数研究的重要工具,本章介绍了复积分的概念及其简单性质,包括柯西积分定理和柯西积分公式。通过实例展示了复积分的计算方法和积分路径对结果的影响,强调了积分值与路径的关联性,并给出了积分估值定理和一些积分性质的证明。
摘要由CSDN通过智能技术生成

第三章
复变函数的积分
复变函数的积分 (简称复积分) 是研究解析函数的一个重要工具.
解析函数的许多重要性质要利用复积分来证明.例如,
要证明"解析函数的导函数连续"及"解析函数的各阶导数存在"这些表面上看来只与微分学有关的命题,
一般均要使用复积分.
本章要建立的柯西积分定理及柯西积分公式尤其重要,
它们是复变图数论的基本定理和基本公式,
以后各章都直接地或间接地和它们有关联.
§ 1 § 1 §1 复积分的概念及其简单性质
1. 复变函数积分的定义
首先我们回顾实变函数的定积分的定义. 设实变函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b]
上连续.用分点
a = x 0 < x 1 < x 2 < ⋯ < x i − 1 < x i < ⋯ < x n = b a=x_{0}<x_{1}<x_{2}<\cdots<x_{i-1}<x_{i}<\cdots<x_{n}=b a=x0<x1<x2<<xi1<xi<<xn=b
把区间 [ a , b ] [a, b] [a,b] 分为 n n n 个小区间 [ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi1,xi].
其长度各为 Δ = x i − x i \Delta=x_{i}-x_{i} Δ=xixi. 在每个小区间
[ x i − 1 , x i ] \left[x_{i-1}, x_{i}\right] [xi1,xi] 上取一点
ξ i , x i − 1 ⩽ ξ i ⩽ x i \xi_{i}, x_{i-1} \leqslant \xi_{i} \leqslant x_{i} ξi,xi1ξixi, 并取下面的和
S n = f ( ξ 1 ) Δ 1 + f ( ξ 2 ) Δ 2 + ⋯ + f ( ξ n ) Δ n = ∑ i = 1 n f ( ξ 1 ) Δ i . S_{n}=f\left(\xi_{1}\right) \Delta_{1}+f\left(\xi_{2}\right) \Delta_{2}+\cdots+f\left(\xi_{n}\right) \Delta_{n}=\sum_{i=1}^{n} f\left(\xi_{1}\right) \Delta_{i} . Sn=f(ξ1)Δ1+f(ξ2)Δ2++f(ξn)Δn=i=1nf(ξ1)Δi.
称极限
S = lim ⁡ n ⋅ 1 ∑ i = 1 n f ( ξ i ) Δ i S=\lim \limits_{n \cdot 1} \sum_{i=1}^{n} f\left(\xi_{i}\right) \Delta_{i} S=n1limi=1nf(ξi)Δi
为函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的定积分.
复变函数积分的定义和上述过程类似,
不过积分不是在区间上而是在复平面中曲线上.
为了叙述简便而又不妨碍实际应用, 今后我们所提到的曲线 (除特别声明外),
一律是指光滑的或逐段光滑的, 因而也是可求长的.曲线通常还要规定其方向,
在开口弧的情形, 这只要指出其起点与终点就行了.
逐段光滑的简单闭曲线简称周线.周线自然也是可求长的.
对于周线,我们在第一章若尔当定理之后实际上已经规定过它的方向,
即"逆时针"方向为正, "顺时针"方向为负.
定义 3.1 设有向曲线 C C C :
z = z ( t ) ( α ⩽ t ⩽ β ) z=z(t) \quad(\alpha \leqslant t \leqslant \beta) z=z(t)(αtβ)
a = z ( α ) a=z(\alpha) a=z(α) 为起点, b = z ( β ) b=z(\beta) b=z(β) 为终点, f ( z ) f(z) f(z) 沿 C C C 有定义. 顺着
C C C a a a b b b 的方向在 C C C
取分点:
a = z 0 , z 1 , ⋯   , z n − 1 , z n = b a=z_{0}, z_{1}, \cdots, z_{n-1}, z_{n}=b a=z0,z1,,zn1,zn=b
把曲线 C C C 分成若干个弧段 (图 3.1). 在从 z k − 1 z_{k-1} zk1 z k ( k = z_{k}(k= zk(k=
1 , 2 , ⋯   , n ) 1,2, \cdots, n) 1,2,,n) 的每一弧段上任取一点 ζ k \zeta_{k} ζk. 作成和数
S n = ∑ k = 1 n f ( ζ k ) Δ z k , S_{n}=\sum_{k=1}^{n} f\left(\zeta_{k}\right) \Delta z_{k}, Sn=k=1nf(ζk)Δzk,
其中 Δ z k = z k − z k − 1 \Delta z_{k}=z_{k}-z_{k-1} Δzk=zkzk1. 当分点无限增多,
而这些弧段长度的最大值趋于零时, 如果和数 S n S_{n} Sn 的极限存在且等于 J J J,
则称 f ( z ) f(z) f(z) 沿 C C C (从 a a a b b b ) 可积, 而称 J J J f ( z ) f(z) f(z)沿 C ( C( C(
a a a b ) b) b) 的积分, 并以记号 ∫ C f ( z ) d z \int_{C} f(z) \mathrm{d} z Cf(z)dz
表示:外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传{width=“204px”}
图 3.1
J = ∫ C f ( z ) d z . J=\int_{C} f(z) \mathrm{d} z . J=Cf(z)dz.
C C C 称为积分路径, ∫ C f ( z ) d z \int_{C} f(z) \mathrm{d} z Cf(z)dz 表示 f ( z ) f(z) f(z) 沿 C C C
的正方向的积分, ∫ C − f ( z ) d z \int_{C-} f(z) \mathrm{d} z Cf(z)dz 表示 f ( z ) f(z) f(z)沿 C C C
的负方向的积分.
如果 J J J 存在, 我们一般不能把 J J J 写成 ∫ a b f ( z ) d z \int_{a}^{b} f(z) \mathrm{d} z abf(z)dz
的形式, 因为 J J J 的值不仅和 a , b a, b a,b有关, 还和积分路径 C C C 有关.
显然, f ( z ) f(z) f(z) 沿曲线 C C C 可积的必要条件为 f ( z ) f(z) f(z) 沿 C C C 有界. 另一方面,
我们有
定理 3.1 若函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y) 沿曲线 C C C 连续, 则
f ( z ) f(z) f(z) 沿 C C C 可积, 且
∫ C f ( z ) d z = ∫ C u   d x − v   d y + i ∫ C v   d x + u   d y . \int_{C} f(z) \mathrm{d} z=\int_{C} u \mathrm{~d} x-v \mathrm{~d} y+\mathrm{i} \int_{C} v \mathrm{~d} x+u \mathrm{~d} y . Cf(z)dz=Cu dxv dy+iCv dx+u dy.
证 设
z k = x k + i y k , x k − x k − 1 = Δ x k , y k − y k − 1 = Δ y k z_{k}=x_{k}+\mathrm{i} y_{k}, x_{k}-x_{k-1}=\Delta x_{k}, y_{k}-y_{k-1}=\Delta y_{k} zk

  • 21
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值