可穿戴传感器在健康应用中的多目标层次分类

#引用

##LaTex

@ARTICLE{7801131,
author={M. Janidarmian and A. Roshan Fekr and K. Radecka and Z. Zilic},
journal={IEEE Sensors Journal},
title={Multi-Objective Hierarchical Classification Using Wearable Sensors in a Health Application},
year={2017},
volume={17},
number={5},
pages={1421-1433},
keywords={accelerometers;biomedical telemetry;body sensor networks;feature selection;medical disorders;medical signal processing;optimisation;patient monitoring;pneumodynamics;remote sensing;signal classification;abdomen;accelerometer sensors;anterior-posterior diameter;breathing disorders;breathing function;chest wall;classification accuracy;classification performance;feature selection;global performance;health application;model selection problem;multiclass problem;multiclassification technique;multiobjective hierarchical classification;multiobjective optimization;respiratory patterns;rib cage;sensor number;sensor placement;tree-based hierarchical classification model;wearable remote monitoring system;wearable sensors;worst case sensitivity;Accelerometers;Calibration;Hidden Markov models;Lungs;Sensitivity;Sensors;Support vector machines;Respiration disorder;accelerometer sensor;classification;multi-objective optimization},
doi={10.1109/JSEN.2016.2645511},
ISSN={1530-437X},
month={March},}

##Normal

M. Janidarmian, A. Roshan Fekr, K. Radecka and Z. Zilic, “Multi-Objective Hierarchical Classification Using Wearable Sensors in a Health Application,” in IEEE Sensors Journal, vol. 17, no. 5, pp. 1421-1433, March1, 1 2017.
doi: 10.1109/JSEN.2016.2645511
keywords: {accelerometers;biomedical telemetry;body sensor networks;feature selection;medical disorders;medical signal processing;optimisation;patient monitoring;pneumodynamics;remote sensing;signal classification;abdomen;accelerometer sensors;anterior-posterior diameter;breathing disorders;breathing function;chest wall;classification accuracy;classification performance;feature selection;global performance;health application;model selection problem;multiclass problem;multiclassification technique;multiobjective hierarchical classification;multiobjective optimization;respiratory patterns;rib cage;sensor number;sensor placement;tree-based hierarchical classification model;wearable remote monitoring system;wearable sensors;worst case sensitivity;Accelerometers;Calibration;Hidden Markov models;Lungs;Sensitivity;Sensors;Support vector machines;Respiration disorder;accelerometer sensor;classification;multi-objective optimization},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7801131&isnumber=7845729


#摘要

多分类技术
两个分类问题的冲突的目标:分类准确度最坏情况敏感性

全局性能度量:总准确度 — 不够

模型选择问题

基于树的层次分类模型
基于 — 六种不同分类器的集成

多目标优化

呼吸障碍的多类
一种可穿戴远程监控系统

十例受试者的呼吸模式 — 99.25%准度,97.78%敏度(呼吸时,胸部前后径变化,使用两个加速度传感器,戴于受试者肋骨和腹部)

传感器的数目、位置,特征选择,这些因素的影响


#I 简介

呼吸障碍 —》 不良健康问题

呼吸障碍的准确识别 《— 上气道气流与呼吸力

多导睡眠图Polysomnography (PSG) — 在呼吸系统疾病诊断中的事实性金标准:不方便、昂贵、费时、需在实验室进行;很少医院提供PSG检测,尤其农村地区。

呼吸障碍被忽视 —》 发展成为心血管的疾病的风险:中风与心力衰竭

另一诊断肺疾病引起的呼吸问题的传统技术:听诊器
极依赖医生经验

移动健康技术的出现 + 普适感测、无线技术及数据处理技术的成熟 —》 呼吸问题远程检测,促进个体健康

远程诊断 —》 监督分类问题
观测属性 —》 呼吸障碍类
分类器 —》 未见样本,远程地

本文:
惯性传感器 + 新的机器学习技术 — 模拟 — 人体呼吸模式 —》 基于云的呼吸问题识别


#II 相关工作

机器学习技术:

  1. 线性二次判别模型linear and quadratic discriminant model
  2. 回归树方法regression tree method
  3. 贝叶斯层次Bayesian hierarchical
  4. 支持向量机Support Vector Machine (SVM)

阻塞性睡眠呼吸暂停
Obstructive Sleep Apnea (OSA)
的自动检测
基于由心率变异性(HRV)和心电信号(EDR)信号
Heart Rate Variability (HRV) and ECG-derived respiration (EDR) signals
提取的特征

【1】
wavelet transform and an Artificial Neural Network (ANN) algorithm
小波变换与人工神经网络
electroencephalogram (EEG) signal
脑电图(EEG)信号
sleep apnea episodes
睡眠呼吸暂停发作 识别
—》
基波的四个频带:
delta (δ), theta (θ), alpha (α) and beta (β)

呼吸暂停 — δ频带以上
呼吸暂停发作结束 — 从δ到θ和α,4∼14Hz

敏度 — ~69.64%
特异性 — ~44.44%

【2】
实时便携式呼吸暂停低通气检测系统
基于
使用Gaussian Radial Basis Function (GRBF)高斯径向基函数的SVM + 口鼻气流信号

检测准度 — 93.4% 与 91.8%:8个不同受试者,脱机和联机测试

虽然有用 — 需信号 — 医院,实验室 — 不能提供自动无线远程监测

正常呼吸状态 --》 分类异常呼吸的方法
例如:

  1. 【3】多层感知器神经网络分类器 + 肺活量测量数据:总准度、敏度、特异性 — 97.6%, 97.5% 与 98.8%
  2. 【4】二元分类问题 — 肺功能试验与神经网络:准度92%
  3. 【5】径向基函数神经网络 + 流量计肺活量计 — 区分正常与阻塞性异常:准度90%
  4. 【6】一种组合的二相继二进神经网络分类器 — 正常、阻塞性和限制性呼吸模式 — 正常与异常模式(第一个分类器)+ 阻塞性和限制性呼吸模式(第二类二元分类):平均准度92.5%
  5. 【7】SVM分类器 + 线性和二阶多项式核 —》 OSA自动识别 — Polysomnographic data 多导睡眠图数据(50例OSA患者和50例对照组,不同类型的特征:HRV、呼吸、血氧饱和度及综合特征):血氧饱和度 — 最好特异性(98%),呼吸力度 — 最高敏度(72%),敏度 — 25%(线性核)-》60%(多项式核)— 对于血氧饱和度 :::分时分类总精度达80% + 主题分类95%
  6. 【8】胸腹部呼吸信号的相位差 — 准度80–90% — 从OSA选择的1-min段和对照组的分类
  7. 【9】非接触式监测系统 — 床下六个称重传感器 – 监测运动、心率和呼吸 — 贝叶斯分类器 + 不同特征 — 正常呼吸,中枢性和阻塞性睡眠呼吸暂停:准度、最小敏度 — 76.89% 与 65%

呼吸音 — 呼吸疾病 — 流感、肺炎和支气管炎

  1. 【10】MelFrequency Cepstral Coefficients (MFCC) — 特征 — SVM — 正常、阻塞性病理气道及实质病理学 — 平均分类准确度:90.77%
  2. 【11】二元分类技术 — 基于 最大似然法 — Hidden Markov Models (HMMs) 隐马尔可夫模型 — 特征提取阶段:心肺音 — 肺音 - 81.3% + 心肺音 - 83%
  3. 【12】Pulmonary Emphysema (PE) diagnosis 肺气肿(PE)的诊断 — 83.9%

呼吸音/
呼吸音 + 心音

呼吸音 — 视为 带限或宽带噪声 — 强化的信号处理

【13】 — 本文作者
加速度传感器 — 9种不同的呼吸模式
6个不同分类器
SVM — 97.50%;
Decision Tree Bagging (DTB) — 97.37%

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述


本文工作

分类准确度 + 模型的最小敏度

不同分类器的层次集合


#III 提出的方法


##A 三轴加速度传感器标定

技术或硬件异常
标定降级或电池故障
偏移、比例因子、非线性或电子噪声的变化

具有专业经验的专用工具

6个静止位置
几秒钟的加速度计原始数据在每个位置
传感器在这些静止位置上的错位 — 影响标定过程 ------ 带有测角器的两个盒子 帮助固定

最小二乘法

传感器质量与临界性 — 人工标定频率

标定过程:

这里写图片描述

向量 ω \omega ω:6个固定位置收集的加速度传感器原始数据
向量 y y y:已知的归一化地球重力矢量
矩阵 X X X:由下式决定的标定参数

这里写图片描述

标定矩阵只算一次


##B 数据分割与特征提取

*定义:*基于运动传感器提取的 p p p个特征,给定标签集 W = { w 1 , w 2 , … , w m } W = \left\{ w_1, w_2, \ldots, w_m \right\} W={w1,w2,,wm}和同样大小的时间窗,呼吸模式标签集 A = { a 1 , a 2 , … , a n } A = \left\{ a_1, a_2, \ldots, a_n \right\} A={a1,a2,,an},目标为 — 寻找最好分类器模型,以使对于任意 w k w_k wk(包含特征集 F k = { f k , 1 , f k , 2 , … , f k , p } F_k = \left\{ f_{k,1}, f_{k,2}, \ldots, f_{k,p} \right\} Fk={fk,1,fk,2,,fk,p}),所预测的标签$\hat{a}_k = C \left( F_k \right) 与 在 与在 w_k$期间的实际呼吸模式尽可能相同。

呼吸问题包括:

  1. Bradypnea
  2. Tachypnea
  3. Kussmaul
  4. Cheyn–stokes
  5. OSA
  6. Biot’s breathing
  7. Sighing
  8. Apneustic

  • 呼吸徐缓
  • 呼吸急促
  • 呼吸深慢 — 一种过度换气
  • 查恩-斯托克斯 — 逐渐增加再降低
  • 阻塞性睡眠呼吸暂停 — 与比奥呼吸相似,但在肋骨与腹部间有不同的阶段转换
  • 比奥呼吸 — 快速呼吸 再 呼吸暂停正常周期
  • 叹息 — 过度换气综合征:深周期性吸气的高不规则呼吸 - 无明显器质性疾病的焦虑
  • 无气门的 — 延长的吸气相+ 扩大的呼气相 - 脑桥上部损伤

这里写图片描述

这里写图片描述

数据分割为 — Fixed-size Overlapping Sliding Window (FOSW) 固定尺寸重叠滑动窗口:窗大小 — 13秒,重叠 — 90%

识别过程:

  1. 从两个运动传感器(图1)收集数据
  2. 特征提取过程 — 强化每个呼吸模式的独特性 + 呼吸模式分类的信号的更易于处理的表示

数据特征:

  1. 时间域特征 — cheaper 廉价
  2. 频率域特征 — 采样率高 以捕捉每个窗口的所有相关频率

故本文使用时间域特征 — 轻量级的 — 减少延迟和功耗 - 在线分类

窗口数据 — 特征

  • Mean
  • Standard Deviation (SD)
  • Respiration Rate ( R R = P × 60 w s RR = \frac{P \times 60}{ws} RR=wsP×60; P P P为局部极大值的数目, w s ws ws表示秒数表示的窗口大小)
  • 平均呼吸时间参数:吸气时间( T i T_i Ti),呼气时间( T e T_e Te
  • 平均倾斜角(滚转和俯仰)
  • 窗口大小为 t t t T V TV TV; t = 3 t=3 t=3)时的平均基于加速度计的呼吸量
  • 平均潮气量变率( T V v a r TV_{var} TVvar; t = 3 t=3 t=3
  • AB与RC间的平均相移( θ \theta θ
  • 符号聚集近似 Symbolic Aggregate approXimation SAX (间隔 w = 3 w=3 w=3,字母表示尺寸 α = 4 \alpha = 4 α=4

本文选择了
均值标准差


##C 特征选择

  • 降低冗余
  • 减少维度

基础假设,好的特征集:

  • 与类高度相关

  • 相互之间不相关

  • filter方法:不考虑模型

  • wrapper方法:基于目标学习算法评估特征子集

基于相关性的特征选择 Correlation-based Feature Selection (CFS) — filter
CFS优于wrapper — 小的数据集
计算成本不高 — 不会重复调用学习算法

CFS — 启发式搜索策略 — 最大化如下目标:

这里写图片描述

M s M_s Ms — 具有 k k k个特征的特征子集的启发式价值
r ˉ c f \bar{r}_{cf} rˉcf — 平均特征-类相关性
r ˉ f f \bar{r}_{ff} rˉff — 平均特征-特征互相关

CFS由空特征子集开始,使用向前最优搜索方法;终止 — 5个相继完全展开子集对于当前最优子集无提升


##D 分类算法

监督式方法 — 离散特征时使用类标签 —》 在数据分割及特征选择前训练集被标记

选用的分类算法:

  • 决策树 Decision Tree (DT)
  • 判别分析 Discriminant Analysis (DA)
  • k k k-近邻 k k k-Nearest Neighbors
  • 支持向量机 Support Vector Machines (SVM)
  • 朴素贝叶斯 Naïve Bayes (NB)
  • 神经网络 Neural Networks (NN)

用二元结构生成分类层
自上而下,二元树形式
特征向量沿着树枝行进

这里写图片描述


##E 进化层次模型

  • 最大化分类准确度
  • 最优化每个类的分类率(识别系统中通常不讨论 — 对每个类均取得高准确度)

基于Pareto的多目标遗传进化算法
潜在优势 — 多目标技术 防止 陷入局部最优 — 提升模型准确度

###1)层次二元树结构

  • 内部节点 — 二元分类器
  • 叶节点 — 呼吸模式(类)

自上而下构建

开始于一个二元分类器,两个组(分别有 m m m n n n个类) — G n ∪ G m = G l G_n \cup G_m = G_l GnGm=Gl, G m ≠ ∅ G_m \neq \emptyset Gm̸=, G n ∩ G m = ∅ G_n \cap G_m = \emptyset GnGm=, l = 9 l=9 l=9.

G l G_l Gl G 1 G_1 G1分别表示树的根与叶
分类器数目为 l − 1 l-1 l1

基于二元树的层次分类法 — 高准确率 + 低运算复杂度 — 广泛接受

树的数目如下得到:

这里写图片描述

M M M — 具有 ∣ M ∣ \left| M \right| M个方法的分类器集合

但如上的完全搜索是不可能的 — 上百万的可行的二元树( > 3 , 000 , 000 >3,000,000 >3,000,000)—》 EA — 近似最优解(合理时间内有效采样大搜索空间)

使用了多目标遗传算法 Genetic Algorithm (GA) — NSGA-II 的变体

  • 较好适应值
  • 提升种群多样性(即使适应值较低)

染色体 — 双层
C = ( C c l a s s , C m o d e l ) C = \left( C_{class}, C_{model} \right) C=(Cclass,Cmodel)

亚染色体

  • C c l a s s = ( C c l a s s [ 1 ] , C c l a s s [ 2 ] , … , C c l a s s [ l ] ) C_{class} = \left( C_{class}\left[ 1 \right], C_{class}\left[ 2 \right], \ldots, C_{class}\left[ l \right] \right) Cclass=(Cclass[1],Cclass[2],,Cclass[l]) — 终端节点从属的点 j j j, j = 1 , 2 , … , l j = 1, 2, \ldots, l j=1,2,,l, 在区间 [ 1 , l − 1 ] \left[ 1, l-1 \right] [1,l1]的整数
  • C m o d e l = ( C m o d e l [ 1 ] , C m o d e l [ 2 ] , … , C m o d e l [ l − 1 ] ) C_{model} = \left( C_{model}\left[ 1 \right], C_{model}\left[ 2 \right], \ldots, C_{model}\left[ l -1\right] \right) Cmodel=(Cmodel[1],Cmodel[2],,Cmodel[l1]) — 每个节点的分类器类型 ∀ i ∈ { 1 , 2 , … , l − 1 } \forall i \in \left\{ 1, 2, \ldots, l-1 \right\} i{1,2,,l1}, C m o d e l [ i ] ∈ M C_{model}\left[ i \right] \in M Cmodel[i]M, 为区间 [ 1 , ∣ M ∣ ] \left[ 1, \left| M \right| \right] [1,M]的整数

可行解判定条件:

这里写图片描述

Eq(6)— 保证图为二叉树,每个节点最多有两个子代
Eq(7)— 检查是否有地方( p j > 0 p_j > 0 pj>0)在下一步添加一个类或分类器
s i z e ( C c l a s s = = j ) size \left( C_{class} == j \right) size(Cclass==j) — 返回 C c l a s s C_{class} Cclass j j j的地方的总数

这里写图片描述

算法1给出了二叉树生成过程及条件
算法由在树的根部的第一个节点 n 1 n_1 n1开始、
f r e e P o s i t i o n s freePositions freePositions — 在每次迭代存储树中可用位置的数组 — s i z e ( f r e e P o s i t i o n s ( j ) ) = p j size \left( freePositions \left( j \right) \right) = p_j size(freePositions(j))=pj,在第 j j j次迭代
行3 — 验证Eq(7)— :

  • s i z e ( i n d i c e s ) = 1 size \left( indices \right) = 1 size(indices)=1(行13)- 左孩子为叶节点(行14)+ 节点 n 2 n_2 n2为右子树的根(行16);
  • s i z e ( i n d i c e s ) = 0 size \left( indices \right) = 0 size(indices)=0 — 节点 n 2 n_2 n2 n 3 n_3 n3分别作为左右子树的根(行9-12);
  • s i z e ( i n d i c e s ) = 2 size \left( indices \right) = 2 size(indices)=2 — 添加相应的类标签作为左右叶节点(行18-19);
  • 否则, v a l i d a t i o n F l a g validationFlag validationFlag标示染色体不是有效树

行5 — 基于 C m o d e l [ i ] C_{model} \left[ i \right] Cmodel[i]的值确定分类器 n i n_i ni的类型。

图4为示例

这里写图片描述

M = { D T , N B , D A , k N N , S V M , N N } M = \left\{ DT, NB, DA, kNN, SVM, NN \right\} M={DT,NB,DA,kNN,SVM,NN}
∣ M ∣ = 6 \left| M \right| = 6 M=6

###2)适应度函数

  • 最大化分类准确度 — 性能度量 – 正确分类所占总分类实例的比例Eq(9)
  • 对于每个类的可接受准确度级别

这里写图片描述

混淆矩阵 confusion matrix C M CM CM — 每行为一个真实类中的实例,每列为在一个预测类中的实例:即,每个类的准确预测的试验所占相应类的全部试验数目的最低百分比
此两个目标,在一定级别后,通常是在优化过程中是相互冲突的
多类分类的灵敏度:

这里写图片描述

S e n s i t i v i t y ( i ) Sensitivity \left( i \right) Sensitivity(i) — 准确识别为是类 i i i的模式数相对于类 i i i中模式的总数的比例(类 i i i的敏感度)

分类器的灵敏度为:

这里写图片描述

主要目标可总结如下:

这里写图片描述

二维度量 — ( S , A ) \left( S, A \right) (S,A) — 二者大体来说为非合作性的
在学习过程开始时 — 能为合作性的
在一定级别过后 — 竞争性的 — 一个目标的提升 - 另一个恶化
目标 — 寻找层次树结构模型 — 同时优化两个目标:整个数据集的全局性能 + 每个类的性能

使用的GA的基本遗传算子为:选择、交叉、变异
锦标赛选择tournament selection,自适应可行突变adaptive feasible mutation,两点交叉two points crossover

种群大小 — 30
代数 — 50


#IV 实验结果


##A 试验设置

10个健康志愿者:5男5女 — 27 ~ 48 ( 34.80 ± 6.89 34.80 \pm 6.89 34.80±6.89
麦克吉尔大学伦理委员会 — McGill University Ethics Committee — 支持

每人试验持续约35分钟。
提供9种呼吸模式 — 1分钟/种,坐姿(躯干与地面约呈90°角)

SPR-BTA 肺活量计

具有12位分辨率的两个LIS3DH三轴加速度计
胸骨中段 + 脐区
50Hz采样


##B 演化层次模型的性能评估

10重交叉验证

图5为准确度与灵敏度

这里写图片描述

最坏情况灵敏度( S S S)— 横轴
准确率( A A A)— 纵轴

这里写图片描述

p ∗ p^* p — 估计的先验概率最小值: 1 l \frac{1}{l} l1 l l l个类)
(a)-(b):一个传感器分别在肋骨与腹部
(e)-(h):部分放大

上肋骨 upper rib cage (RC)
下肋骨/腹部 lower rib cage/abdomen (AB) — 效果较好

基于相关性的特征选择 Correlation-based Feature Selection (CFS)

(c)(d)(g)(h)— CFS特征选择后的结果

表II总结了选择的特征:

这里写图片描述

特征冗余度降低:

  • 66%(27 -> 9)— 单传感器 — ( S , A ) = ( 87.23 % , 92.06 % ) \left( S, A \right) = \left( 87.23\%, 92.06\% \right) (S,A)=(87.23%,92.06%) (Acc1) + { ( 89.74 % , 94.77 % ) , ( 88.64 % , 95.06 % ) } \left\{ \left( 89.74\%, 94.77\% \right), \left( 88.64\%, 95.06\% \right) \right\} {(89.74%,94.77%),(88.64%,95.06%)} (Acc2)
  • 双传感器 - ( 97.78 % , 99.25 % ) \left( 97.78\%, 99.25\% \right) (97.78%,99.25%) -> ( 93.02 % , 95.44 % ) \left( 93.02\%, 95.44\% \right) (93.02%,95.44%) (图6)

这里写图片描述

平均特征数目:55 -> 14 (74.55%)
准确率降低:<4%
灵敏度降低:<5%
每个类:97% -> 93%

图7为每个类的灵敏度与误分类率

这里写图片描述

误分类率计算:

这里写图片描述

表III — 单目标与多目标算法比较

这里写图片描述

K K K重交叉验证
Leave-One-Subject-Out (LOSO) — 目标独立交叉验证 — 反映了主题间变异性 + 在未见数据检测

使用所有检测者(除了一个)的数据训练
利用排除的那个进行验证
对所有的10个受试者均进行
准确率值降低:

  • 单目标 — 7.19% 6.83% 6.93% (Acc1, Acc2, Both)平均6.98%
  • 集合模型 — 准确率 + 灵敏度 降低:5.92% + 6.55%

降低原因 — 验证过程中的测试者间的变异

时间优势:
训练的计算复杂度高
使用模型分类效率更高 — 3.22倍快于多类别SVM分类器模型 — 每个内部节点的分类器的计算复杂度远低于带纠错输出码(error correcting output codes,ECOC)的9-类别SVM


#V 结论

传感器技术 — 数据

机器学习技术

多目标

EA

多种分类器集成

层次模型

二叉树


#参考文献

【1】R. Lin, R. Lee, C. Tseng, H. Zhou, C. Chao, and J. Jiang, “A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks,” Biomed. Eng. Appl. Basis Commun., vol. 18, no. 3, pp. 138–143, 2006.
【2】B. Koley and D. Dey, “Adaptive classification system for real-time detection of apnea and hypopnea events,” in Proc. IEEE Point–Care Healthcare Technol., Jan. 2013, pp. 42–45.
【3】S. Jafari, H. Arabalibeik, and K. Agin, “Classification of normal and abnormal respiration patterns using flow volume curve and neural network,” in Proc. Int. Symp. Health Inform. Bioinform. (HIBIT), Apr. 2010, pp. 110–113.
【4】V. Mahesh and S. Ramakrishnan, “Assessment and classification of normal and restrictive respiratory conditions through pulmonary function test and neural network,” J. Med. Eng. Techno., vol. 31, no. 4, pp. 300–304, 2007.
【5】V. Mahesh and S. Ramakrishnan, “Detection of obstructive respiratory abnormality using flow–volume spirometry and radial basis function neural networks,” J. Med. Syst., vol. 31 no. 6, pp. 461–465, 2007.
【6】M. J. Baemani, M. Amirhasan, and P. Moallem, “Detection of respiratory abnormalities using artificial neural networks,” J. Comput. Sci., vol. 4, no. 8, pp. 663–667, 2008.
【7】M. Al-Angari and V. Sahakian, “Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 3, pp. 463–468, May 2012.
【8】P. Varady, S. Bongar, and Z. Benyo, “Detection of airway obstructions and sleep apnea by analyzing the phase relation of respiration movement signals,” IEEE Trans. Instrum. Meas., vol. 52, no. 1, pp. 2–6, Feb. 2003.
【9】Z. T. Beattie, C. C. Hagen, M. Pavel, and T. L. Hayes, “Classification of breathing events using load cells under the bed,” in Proc. Conf., Sep. 2009, pp. 3921–3924.
【10】R. Palaniappan and K. Sundaraj, “Respiratory sound classification using cepstral features and support vector machine,” in Proc. IEEE Recent Adv. Intell. Comput. Syst. (RAICS), Dec. 2013, pp. 132–136.
【11】M. Yamashita, M. Himeshima, and S. Matsunaga, “Robust classification between normal and abnormal lung sounds using adventitious-sound and heart-sound models,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2014, pp. 4418–4422.
【12】T. Okubo, N. Nakamura, M. Yamashita, and S. Matsunaga, “Classification of healthy subjects and patients with pulmonary emphysema using continuous respiratory sounds,” in Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2014, pp. 70–73.
【13】A. R. Fekr, M. Janidarmian, K. Radecka, and Z. Zilic, “Respiration disorders classification with informative features for m-health applications,” IEEE J. Biomed. Health Inform., vol. 20, no. 3, pp. 733–747, May 2016.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值