原理:将已有数据集(样本数为K)分成K份,每次选取K-1份训练,剩余1份测试。最后得到K个得分,将其平均作为该模型的得分。
注意:此处的模型不是指模型的实例,而是指模型本身 。CV中调的参数不是模型的实例对应的参数,而是模型本身的超参数。
参考【机器学习】Cross-Validation(交叉验证)详解
LOOCV(留一交叉验证)的理解
最新推荐文章于 2025-02-19 11:19:55 发布
原理:将已有数据集(样本数为K)分成K份,每次选取K-1份训练,剩余1份测试。最后得到K个得分,将其平均作为该模型的得分。
注意:此处的模型不是指模型的实例,而是指模型本身 。CV中调的参数不是模型的实例对应的参数,而是模型本身的超参数。
参考【机器学习】Cross-Validation(交叉验证)详解