NIIRS和GIQE简介

本文介绍了遥感影像质量评价的方法,包括主观和客观两种。重点阐述了NIIRS(美国国家图像解译等级标准)和GIQE(通用影像质量方程),并说明了GIQE如何连接影像的客观参数与主观评价。此外,还提及了可见光NIIRS标准的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遥感影像质量评价方法

图像质量评价可分为主观判别方法和客观判别方法。图像质量的主观判别方法是指用人眼观测图像,按照某种规定标准或图像样品,由人的主观感觉和统计结果对图像质量的优劣做出评定;主观评价的评价结果往往由于评价者不同而存在差异,稳定性较差,同时面对大数据量的影像时效率低下,人力成本过高。客观评价则是从影像成像链路的环节提取评价参数、构建数学模型定量地描述影像质量,如计算影像的亮度、信噪比、MTF 等参数指标来评价影像的质量。这种方法不依赖于人的主观判断,效率高、稳定性高,但评价结果往往不能直接回答生产生活中影像是否满足任务需求的问题。

NIIRS和GIQE

国际社会上最为常用的主观评价准则是美国国家图像解译等级标准(National Imagery Interpretability Rating Scale,NIIRS),它基于用户的任务需求来对影像质量划分等级,对影像质量是否满足特定任务的需求进行了评估。NIIRS分为 0~9 级,解译度逐级递增。通用影像质量方程(The General Image QualityEquation,GIQE)是针对 NIIRS 所开发出来的质量评估模型,它起到了联系影像客观评价结果与主观评价结果间的桥梁作用,能够利用影像本身的系统成像参数(客观评价指标)来对影像的 NIIRS(主观评价指标)进行评估。

上世纪七十年代,基于任务需求的遥感影像分级标准 NIIRS 由美国国防航空侦察署正式发布。与此同时,美国航空图像委员会针对 NIIRS 标准开发了一个由成像系统参数来估算影像解译度等级的经验模型,即通用影像质量方程GIQE。GIQE 是针对 NIIRS 开发的影像质量预测模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值