从学习的角度来说,三十岁开始学习Python编程并不算晚,但是如果从就业的角度来说,却并不算早了。
Python语言在当下的大数据时代背景下得到了广泛的应用,对于职场人来说,学习Python还是有一定必要的,尤其是对于数据比较敏感的岗位,像咨询类岗位、市场分析类岗位、运营管理类岗位等等。
如果想在三十岁的时候通过学习Python来谋求一份程序员工作,则需要有一个系统的计划,毕竟三十岁对于程序员来说,正处在升级转换的重要发展期,而三十岁却刚入行程序员,必然会有一些实际的问题需要克服。当然,只要下定决心就没有克服不了的困难。
简单的总结一下,对于三十岁开始学习Python的情况,需要注意以下几点问题:
第一:提高学习效率。如果没有计算机相关知识基础,并不建议采取自学的学习方式,参加一个专业的辅导班既能系统的学习Python,又能提升学习的效率,这会节省大量的学习时间。
第二:制定一个明确的方向。Python编程可以做Web开发、大数据开发(分析)、人工智能开发,另外Python全栈程序员也是个不错的方向,具体选择哪个方向要根据自身的知识结构和发展前景来综合考虑。
第三:注重实践。实践环节是非常重要的,一定要在学习Python的过程中做大量的实验,在基础知识学习结束之后,最好参加一个项目组的项目实习,实习的过程对于程序员来说还是非常重要的。
各章内容
-
第一章,数据分析与挖掘概览
-
第二章,从收入的预测分析开始
-
第三章,Python入门基础
-
第四章,Python数值计算工具--Numpy
-
第五章,Python数据处理工具--Pandas
-
第六章,Python数据可视化--Matplotlib
-
第七章,基于线性回归模型的预测
-
第八章,岭回归与LASSO回归模型的比较和应用
-
第九章,基于Logistic回归模型的分类
-
第十章,决策树与随机森林的比较和应用
-
第十一章,基于KNN模型的预测和分类
-
第十二章,三类朴素贝叶斯模型的比较和应用
-
第十三章,SVM模型的应用
-
第十四章,提升树之GBDT模型的应用与发展
-
第十五章,Kmeans聚类分析的应用
-
第十六章,DBSCAN与层次聚类的比较和应用