测绘行业的奇进偶舍规则(奇进偶不进)

奇进偶舍是一种比较精确比较科学的计数保留法,是一种数字修约规则。
其具体要求如下(以保留两位小数为例):
(1)要求保留位数的后一位如果是4,则舍去, 例如 5.214保留两位小数为5.21。
(2)如果保留位数的后一位如果是6,则进上去, 例如5.216保留两位小数为5.22。
(3)如果保留位数的后一位如果是5,而且5后面不再有数,要根据保留位数的那一位决定是舍去还是进入:如果是奇数则进入,如果是偶数则舍去。例如5.215保留两位小数为5.22,5.225保留两位小数为5.22。
(4)如果保留位数的后一位如果是5,而且5后面仍有数,例如5.2254保留两位小数为5.23,也就是说如果5后面还有数据,则无论奇偶都要进入。
从统计学的角度,“奇进偶舍”比“四舍五入”要科学,在大量运算时,它使舍入后的结果误差的均值趋于零,而不是像四舍五入那样逢五就入,导致结果偏向大数,使得误差产生积累进而产生系统误差,“奇进偶舍”使测量结果受到舍入误差的影响降到最低。

内容概要:本文介绍了基于自适应傅里叶分解(AFD)的多通道信号分析方法,并提供了完整的Matlab代码实现,适用于复杂信号的时频分析。该方法特别针对非平稳、非线性信号具有良好的分解能力,可用于如机械故障诊断、生物医学信号处理等领域。文档还列举了多个相关研究方向和技术应用实例,包括轴承故障检测、无人机路径规划、微电网功率交换、信号去噪与预测等,展示了AFD及其他先算法在工程实践中的广泛适用性。同时附带网盘资源链接,便于获取完整代码与资料。; 适合人群:具备一定信号处理或自动化背景的研究生、科研人员及从事机电系统故障诊断、智能算【自适应傅里叶分解AFD】多通道信号分析的自适应傅里叶分解(Matlab代码实现)法开发的工程技术人员;熟悉Matlab编程并希望将先信号分析方法应用于实际项目的从业者;; 使用场景及目标:①在变速工况下对多通道振动信号行高效特征提取与故障识别;②利用AFD替代传统傅里叶变换或EMD方法提升信号分解精度;③结合倒谱预白化、包络谱分析等技术实现强噪声环境下的早期故障诊断;④拓展至无人机、电力系统、通信等领域的信号建模与优化问题; 阅读建议:建议读者按目录顺序系统学习,重点关注AFD算法原理与Matlab实现细节,结合提供的案例调试代码,理解参数设置对分解效果的影响;同时可参考文中提及的其他高级算法(如鲸鱼优化、深度学习模型)行融合创新,提升研究深度与实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值