LDA PCA ICA

版权声明:
本文部分参考于文章(LeftNotEasy发布于http://leftnoteasy.cnblogs.com),对此为了以表尊重写下参考文章的版权声明如下:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com

LDA

LDA的全称是Linear Discriminant Analysis(线性判别分析),是一种supervised learning。有些资料上也称为是Fisher’s Linear Discriminant,因为它被Ronald Fisher发明自1936年,Discriminant这次词我个人的理解是,一个模型,不需要去通过概率的方法来训练、预测数据,比如说各种贝叶斯方法,就需要获取数据的先验、后验概率等等。LDA是在目前机器学习、数据挖掘领域经典且热门的一个算法,据我所知,百度的商务搜索部里面就用了不少这方面的算法。

LDA的原理是,将带上标签的数据(点),通过投影的方法,投影到维度更低的空间中,使得投影后的点,会形成按类别区分,一簇一簇的情况,相同类别的点,将会在投影后的空间中更接近。要说明白LDA,首先得弄明白线性分类器(Linear Classifier):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:

yk(x)=wTkx+wk0 y k ( x ) = w k T x + w k 0

当满足条件:对于所有的 j j ,都有Yk>Yj,的时候,我们就说 x x 属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。

上式实际上就是一种投影,是将一个高维的点投影到一条高维的直线上,LDA最求的目标是,给出一个标注了类别的数据集,投影到了一条直线之后,能够使得点尽量的按类别区分开,当k=2即二分类问题的时候,如下图所示:
LDA

红色的方形的点为0类的原始点、蓝色的方形点为1类的原始点,经过原点的那条线就是投影的直线,从图上可以清楚的看到,红色的点和蓝色的点被原点明显的分开了,这个数据只是随便画的,如果在高维的情况下,看起来会更好一点。下面我来推导一下二分类LDA问题的公式:
假设用来区分二分类的直线(投影函数)为:

y=wTx y = w T x

LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好,所以我们需要定义几个关键的值。
类别i的原始中心点为:( Di D i 表示属于类别i的点)

mi=1/nxDix m i = 1 / n ∑ x ∈ D i x

类别 i i 投影后的中心点为:

m¯i=wTmi

衡量类别i投影后,类别点之间的分散程度(方差)为:

s¯i=yYi(ym¯i)2 s ¯ i = ∑ y ∈ Y i ( y − m ¯ i ) 2

最终我们可以得到一个下面的公式,表示LDA投影到w后的损失函数:

J(w)=|m¯1m¯2|2s¯21+s¯22 J ( w ) = | m ¯ 1 − m ¯ 2 | 2 s ¯ 1 2 + s ¯ 2 2

我们分类的目标是,使得类别内的点距离越近越好(集中),类别间的点越远越好。分母表示每一个类别内的方差之和,方差越大表示一个类别内的点越分散,分子为两个类别各自的中心点的距离的平方,我们最大化 J(w) J ( w ) 就可以求出最优的 w w 了。想要求出最优的w,可以使用拉格朗日乘子法,但是现在我们得到的 J(w) J ( w ) 里面 w w 是不能被单独提出来的,我们就得想办法将w单独提出来。

我们定义一个投影前的各类别分散程度的矩阵,这个矩阵看起来有一点麻烦,其实意思是,如果某一个分类的输入点集 Di D i 里面的点距离这个分类的中心店mi越近,则 Si S i 里面元素的值就越小,如果分类的点都紧紧地围绕着 mi m i ,则 Si S i 里面的元素值越更接近0.

Si=xDi(xmi)(xmi)T S i = ∑ x ∈ D i ( x − m i ) ( x − m i ) T

带入 Si S i ,将 J(w) J ( w ) 分母化为:

s¯i=xDi(wTxwTmi)2=xDiwT(xmi)(xmi)Tw=wTSiw s ¯ i = ∑ x ∈ D i ( w T x − w T m i ) 2 = ∑ x ∈ D i w T ( x − m i ) ( x − m i ) T w = w T S i w

s¯21+s¯22=wT(S1+S2)w=wTSww s ¯ 1 2 + s ¯ 2 2 = w T ( S 1 + S 2 ) w = w T S w w

同样的将 J(w) J ( w ) 分子化为:

|m¯1m¯2|2=wT(m1m2)(m1m2)Tw=wTSBw | m ¯ 1 − m ¯ 2 | 2 = w T ( m 1 − m 2 ) ( m 1 − m 2 ) T w = w T S B w

这样损失函数可以化成下面的形式:

J(w)=wTSBwwTSww J ( w ) = w T S B w w T S w w

这样就可以用最喜欢的拉格朗日乘子法了,但是还有一个问题,如果分子、分母是都可以取任意值的,那就会使得有无穷解,我们将分母限制为长度为1(这是用拉格朗日乘子法一个很重要的技巧,在下面将说的PCA里面也会用到,如果忘记了,请复习一下高数),并作为拉格朗日乘子法的限制条件,带入得到:

c(w)dcdwSBw=wTSBwλ(wTSww1)=2SBw2λSww=0=λSww(1)(2)(3) (1) c ( w ) = w T S B w − λ ( w T S w w − 1 ) (2) ⇒ d c d w = 2 S B w − 2 λ S w w = 0 (3) ⇒ S B w = λ S w w

这样的式子就是一个求特征值的问题了。

对于 N(N>2) N ( N > 2 ) 分类的问题,我就直接写出下面的结论了:

SWSBSBwi=i=1cSi=i=1cni(mim)(mim)T=λSwwi(4)(5)(6) (4) S W = ∑ i = 1 c S i (5) S B = ∑ i = 1 c n i ( m i − m ) ( m i − m ) T (6) S B w i = λ S w w i

这同样是一个求特征值的问题,我们求出的第 i i 大的特征向量,就是对应的wi了。

这里想多谈谈特征值,特征值在纯数学、量子力学、固体力学、计算机等等领域都有广泛的应用,特征值表示的是矩阵的性质,当我们取到矩阵的前N个最大的特征值的时候,我们可以说提取到的矩阵主要的成分(这个和之后的PCA相关,但是不是完全一样的概念)。在机器学习领域,不少的地方都要用到特征值的计算,比如说图像识别、pagerank、LDA、还有之后将会提到的PCA等等。

下图是图像识别中广泛用到的特征脸(eigen face),提取出特征脸有两个目的,首先是为了压缩数据,对于一张图片,只需要保存其最重要的部分就是了,然后是为了使得程序更容易处理,在提取主要特征的时候,很多的噪声都被过滤掉了。跟下面将谈到的PCA的作用非常相关。
face_LDA
特征值的求法有很多,求一个D * D的矩阵的时间复杂度是O(D^3), 也有一些求Top M的方法,比如说power method,它的时间复杂度是O(D^2 * M), 总体来说,求特征值是一个很费时间的操作,如果是单机环境下,是很局限的。

PCA

主成分分析(PCA)与LDA有着非常近似的意思,LDA的输入数据是带标签的,而PCA的输入数据是不带标签的,所以PCA是一种unsupervised learning。LDA通常来说是作为一个独立的算法存在,给定了训练数据后,将会得到一系列的判别函数(discriminate function),之后对于新的输入,就可以进行预测了。而PCA更像是一个预处理的方法,它可以将原本的数据降低维度,而使得降低了维度的数据之间的方差最大(也可以说投影误差最小,具体在之后的推导里面会谈到)。
方差这个东西是个很有趣的,有些时候我们会考虑减少方差(比如说训练模型的时候,我们会考虑到方差-偏差的均衡),有的时候我们会尽量的增大方差,不一定会有很严密的证明,从实践来说,通过尽量增大投影方差的PCA算法,确实可以提高我们的算法质量。
说了这么多,推推公式可以帮助我们理解。我下面将用两种思路来推导出一个同样的表达式。首先是最大化投影后的方差,其次是最小化投影后的损失(投影产生的损失最小)。

最大化方差法:

假设我们还是将一个空间中的点投影到一个向量中去。首先,给出原空间的中心点:

x¯=1/Nn=1Nxn x ¯ = 1 / N ∑ n = 1 N x n

假设 u1 u 1 为投影向量,投影之后的方差为:

1/Nn=1N{uT1xnuT1x¯}2=uT1Su1 1 / N ∑ n = 1 N { u 1 T x n − u 1 T x ¯ } 2 = u 1 T S u 1

上面这个式子如果看懂了之前推导LDA的过程,应该比较容易理解,如果线性代数里面的内容忘记了,可以再温习一下,优化上式等号右边的内容,还是用拉格朗日乘子法:

uT1Su1+λ(1uT1u1) u 1 T S u 1 + λ ( 1 − u 1 T u 1 )

将上式求导,使之为0,得到:

Su1=λ1u1 S u 1 = λ 1 u 1

这是一个标准的特征值表达式了, λ λ 对应的特征值, u u 对应的特征向量。上式的左边取得最大值的条件就是λ1最大,也就是取得最大的特征值的时候。假设我们是要将一个D维的数据空间投影到M维的数据空间中(M < D), 那我们取前M个特征向量构成的投影矩阵就是能够使得方差最大的矩阵了。

最小化损失法:

假设输入数据x是在D维空间中的点,那么,我们可以用D个正交的D维向量去完全的表示这个空间(这个空间中所有的向量都可以用这D个向量的线性组合得到)。在D维空间中,有无穷多种可能找这D个正交的D维向量,哪个组合是最合适的呢?

假设我们已经找到了这D个向量,可以得到:

xn=i=1Dαniui x n = ∑ i = 1 D α n i u i

我们可以用近似法来表示投影后的点:

x¯n=i=1Mzniui+i=M+1Dbniui x ¯ n = ∑ i = 1 M z n i u i + ∑ i = M + 1 D b n i u i

上式表示,得到的新的x是由前M 个基的线性组合加上后D-M个基的线性组合,注意这里的z是对于每个x都不同的,而b对于每个x是相同的,这样我们就可以用M个数来表示空间中的一个点,也就是使得数据降维了。但是这样降维后的数据,必然会产生一些扭曲,我们用J描述这种扭曲,我们的目标是,使得J最小:

J=1/Nn=1Nxnx¯n2 J = 1 / N ∑ n = 1 N ‖ x n − x ¯ n ‖ 2

上式的意思很直观,就是对于每一个点,将降维后的点与原始的点之间的距离的平方和加起来,求平均值,我们就要使得这个平均值最小。我们令:

Iznj=0znj=xTnujIbj=0bj=xTnuj(7)(8) (7) ∂ ℑ ∂ z n j = 0 ⇒ z n j = x n T u j (8) ∂ ℑ ∂ b j = 0 ⇒ b j = x n − T u j

将上式带入J的表达式得到:

J=1/Nn=1Ni=M+1D{uT1xnuT1x¯}2=i=M+1DuT1Su1 J = 1 / N ∑ n = 1 N ∑ i = M + 1 D { u 1 T x n − u 1 T x ¯ } 2 = ∑ i = M + 1 D u 1 T S u 1

再用上拉普拉斯乘子法(此处略),可以得到,取得我们想要的投影基的表达式为:

Su1=λ1u1 S u 1 = λ 1 u 1

这里又是一个特征值的表达式,我们想要的前M个向量其实就是这里最大的M个特征值所对应的特征向量。证明这个还可以看看,我们J可以化为:

J=M+1Dλi J = ∑ M + 1 D λ i

也就是当误差J是由最小的D - M个特征值组成的时候,J取得最小值。跟上面的意思相同。

下图是PCA的投影的一个表示,黑色的点是原始的点,带箭头的虚线是投影的向量,Pc1表示特征值最大的特征向量,pc2表示特征值次大的特征向量,两者是彼此正交的,因为这原本是一个2维的空间,所以最多有两个投影的向量,如果空间维度更高,则投影的向量会更多。

ICA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值