模型建立:机器A的n个状态表示成X集合中得n个点,机器B的m个状态表示成Y集合的m个点。当一个任务可以用机器A的i状态,和机器B的j状态解决的时候,我们连接X集合中的第i个结点和Y集合中的第j个结点。所有的任务都完成意味着所有的边都被选择到。因此这个题就变成求最小覆盖点集,即最大匹配数。注意,我们不考虑能用机器A或机器B的0状态来解决的任务,因为这样的任务一开始就都被解决了。
#include<iostream>
using namespace std;
const int MAX = 102;
bool linkMap[MAX][MAX];
int crossPath[MAX];
bool used[MAX];
int n, m;
bool search(int u)
{
for (int i=1;i<m;i++)
{
if (linkMap[u][i]&&!used[i])
{
used[i]=1;//保证路径上无重复点出现
if (crossPath[i]==-1||search(crossPath[i]))
{
crossPath[i]=u;//①增广路径的取反
return true;
}
}
}
return false;
}
int hungary()
{
int cnt = 0;
memset(crossPath, -1, sizeof(crossPath));
for(int i= 1; i<n; i++)
{
memset(used,0, sizeof(used));
if(search(i))
cnt++;
}
return cnt;
}
int main()
{
//ifstream cin("Machine Schedule.txt");
int k;
while(cin>>n,n)
{
cin>>m>>k;
memset(linkMap,false, sizeof(linkMap));
for(int i =0; i < k; i++)
{
int v1, v2;
cin>>v1>>v1>>v2;
if(v1&&v2)
linkMap[v1][v2] = true;
}
cout<<hungary()<<endl;
}
return 0;
}