Matlab图像处理学习笔记(六):基于sift特征点的人民币识别

本文介绍了如何运用SIFT特征点进行人民币面额识别,包括1元和100元。文章提供源码,通过提取特征点、匹配并设置匹配点数阈值来实现。尽管采用串行可能导致运行时间增长,但可以通过并行优化。详细步骤和SIFT特性简述,以及关键代码展示,帮助理解图像处理中SIFT的应用。
摘要由CSDN通过智能技术生成

本文记录如何利用sift特征点进行人民币的识别。本文给出的matlab源码识别了1元与100元人民币的面额,相同思路,可以对各种币值的人民币进行面额、正反面的识别。但由于本程序采用串行,模板数的增多会导致运行时间线性增长,具体应用时你可以采取并行的方法加以优化,本文只给出思路。

本文的sift特征提取源码采用的是David G. Lowe(sift提出者)提供的闭源程序。

本文涉及到知识点如下:

1、sift特征点提取。

2、基于欧式距离的特征点匹配。(作者加上了最近距离与次近距离的比例来进一步筛选)

我在查阅sift的资料时,参阅了这篇博文:http://blog.csdn.net/abcjennifer/article/details/7639681

本文源码的压缩包我已传至 我的博客资源,链接http://download.csdn.net/detail/u010278305/8356601点击打开链接

转载请注明出处:http://blog.csdn.net/

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值