DFLab美女全套模型+训练素材SRC(2.7W)+DST(6.3W)+直播DFM+Model

本文介绍了包含美女面部模型(SRC、DST、DFM和Model)的完整资源包,包括低至1.5LOSS的优化版本,以及详细的使用方法,如常规训练、DFM在Deepfacelive中的应用等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全套模型+素材:点击下载

美女全套:SRC(2.7W)+DST(6.3W)+DFM+Model(812W+LOSS<0.15,可做底丹,切换SRC一秒出脸)
简介
专享一:美女专丹model文件夹下所有模型文件(LOSS已降至1.5)
专享二:美女直播DFM文件(迭代次数812W,LOSS<1.5)
专项三:DST文件(切好脸,已应用万能遮罩):
DST人脸63000张,角度全、光影丰富,像素768*768,全部应用了镇坛之宝万能遮罩,文件大小8.74G!
专享四:SRC文件(切好脸,已应用万能遮罩):
DFL脚本赛选约5000张最优人脸SRC(分辨率512*512及1024*1024都有),备用22000+张(分辨率512*512及1024*1024都有)
下载后的使用方法:
1、作为专丹可以继续训练:
1)常规训练:DST人脸文件放入DST的aligned文件夹,SRC人脸文件放入SRC的aligned文件夹,model文件放入model文件夹,点击6) 训练重量级模型 train SAEHD,按照7步法调整参数优化;
2)专题特训:挑选带上/下牙的DST人脸文件放入DST的aligned文件夹,挑选带上/下牙的SRC人脸文件放入SRC的aligned文件夹,model文件放入model文件夹,点击6) 训练重量级模型 train SAEHD,按照7步法调整参数优化(见截图);
2、DFM放入Deepfacelive使用;
3、SRC(切好脸,已应用万能遮罩)人脸文件放入你的其他分辨率模型进行训练
4、DST(切好脸,已应用万能遮罩)人脸文件作为其他模型训练的素材之一


================== Model Summary ===================
==                                                ==
==            Model name: new_SAEHD               ==
==                                                ==
==     Current iteration: 8128862                 ==
==                                                ==
==---------------- Model Options -----------------==
==                                                ==
==            resolution: 224                     ==
==             face_type: wf                      ==
==     models_opt_on_gpu: True                    ==
==                 archi: liae-udt                ==
==               ae_dims: 512                     ==
==                e_dims: 64                      ==
==                d_dims: 64                      ==
==           d_mask_dims: 32                      ==
==       masked_training: True                    ==
==       eyes_mouth_prio: False                   ==
==           uniform_yaw: False                   ==
==         blur_out_mask: True                    ==
==             adabelief: True                    ==
==            lr_dropout: n                       ==
==           random_warp: False                   ==
==      random_hsv_power: 0.0                     ==
==       true_face_power: 0.0                     ==
==      face_style_power: 0.0                     ==
==        bg_style_power: 0.0                     ==
==               ct_mode: rct                     ==
==              clipgrad: True                    ==
==              pretrain: False                   ==
==       autobackup_hour: 0                       ==
== write_preview_history: False                   ==
==           target_iter: 0                       ==
==       random_src_flip: False                   ==
==       random_dst_flip: False                   ==
==            batch_size: 8                       ==
==             gan_power: 0.0                     ==
==        gan_patch_size: 32                      ==
==              gan_dims: 16                      ==
==                                                ==
==------------------ Running On ------------------==
==                                                ==
==          Device index: 0                       ==
==                  Name: NVIDIA GeForce RTX 4090 ==
==                  VRAM: 20.85GB                 ==
==                                                ==
====================================================
 全套模型+素材: 点击下载
### DeepFaceLive DFM人脸模型下载与使用教程 #### 下载DFM格式的人脸模型文件 为了获取适用于DeepFaceLive的DFM人脸模型,可以从多个渠道获得这些资源。例如,“大众脸美女直播”的DFM模型可以直接用于DeepFaceLive,并且只需将其放置在指定路径下即可立即投入使用[^3]。 对于更高质量的需求,可以考虑像“刘亦菲320高清直播dfm模型_SAEHD_model”,该模型以其高分辨率和优秀的换脸效果著称,在实际应用中能够提供更好的视觉体验。此模型可通过特定链接进行下载[^4]。 #### 安装过程概述 一旦选择了合适的DFM模型并完成下载之后,按照标准流程操作可确保顺利集成至DeepFaceLive环境中: - **准备阶段**:先将所选中的DFM模型保存到本地计算机上; - 将上述已下载好的模型文件移入`DeepFaceLab\workspace\model`目录内作为初步处理步骤的一部分; - 接着再把相同的一份副本转移到`DeepFaceLive/userdata/dfm_models`位置以便于后续调用; - 启动DeepFaceLive应用程序后,在设置选项里找到对应入口来加载新加入的脸部数据集; 当一切配置完成后,用户便可以在实时预览窗口看到预期的效果变化了[^1]。 #### 实际应用场景说明 除了基本的操作指南外,还有专门针对不同场景优化过的指导材料可供参考。比如《Rope DFM一键整合包AI换脸教程》就详细描述了一个完整的从环境搭建到最后成品展示的过程。其中特别强调了一旦启动程序并且成功连接摄像设备以后,应该怎样正确选取包含有之前导入过的目标面部特征集合的位置——即指向存放所有可用DFM文件的那个子文件夹(`dfl_models`)来进行下一步的选择工作[^2]。 ```python import os def move_dfm_to_target(source_path, target_paths): """ 移动DFM文件到目标路径 参数: source_path (str): 源DFM文件所在路径. target_paths (list of str): 目标路径列表. 返回: None """ for path in target_paths: try: os.makedirs(path, exist_ok=True) files = os.listdir(source_path) dfm_files = [f for f in files if f.endswith('.dfm')] for file_name in dfm_files: full_file_name = os.path.join(source_path, file_name) if os.path.isfile(full_file_name): shutil.copy(full_file_name, path) print(f"Files moved to {path}") except Exception as e: print(e) source_directory = "path/to/downloaded/models" target_directories = ["DeepFaceLab/workspace/model", "DeepFaceLive/userdata/dfm_models"] move_dfm_to_target(source_directory, target_directories) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

牛马尼格

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值