经典计算机视觉论文笔记——《Robust Real-Time Face Detection》

本文回顾了2004年的经典计算机视觉论文《Robust Real-Time Face Detection》,探讨了AdaBoost算法在人脸检测中的应用,以及cascade策略如何高效处理非人脸窗口。尽管硬件能力已大幅提高,但论文中的思想至今仍有借鉴价值,如cascade的负类过滤和特征选择。文章还指出,特征如Haar算子虽表达能力有限,但组合形成的特征集合在不同尺度上的应用展现了强大效能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        第一次读这篇传奇之作大概是九年前了,也就是2007年,而那时距论文正式发表(2004年)也已经有四年之久了。现在读来,一些想法,在深度学习大行其道的今天仍然具有借鉴意义,让人敬佩不已。

        VJ人脸检测器应该是历史上第一个成功商业应用的实时人脸检测器。我估计现在相机和手机上的人脸检测算法绝大部分还是VJ或VJ算法的徒子徒孙。OpenCV当年也是凭借VJ算法的集成而一炮走红,到现在还是最主流的计算机视觉算法库。本人在真实环境下亲测,2010年后的许多能在FDDB测评主页上露个脸的开源算法,其实效果都不见得会比VJ算法好多少。

算法创新点
创新点 作用
积分图

加速haar特征计算的巧妙点子。一劳永逸,去掉特征计算中的冗余。

AdaBoost人脸检测器

特征选择+分类器融合。对adaboost的思想进行合理改造,一个haar特征对应一个弱分类器,弱特征组合成强特征,弱分类器组合成强分类器。

级联结构

由粗到精的检测策略,加速的同时又能保证精度。先在前期用快速算法把大量非人脸去掉,平衡后期慢速的更精细分类开销。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值