Win10系统安装 Google Earth Engine Python API详细记录

本文详细介绍了如何在Windows10系统上通过Anaconda安装和配置GoogleEarthEnginePythonAPI,包括创建虚拟环境、安装相关库、GoogleCloudCLI的设置以及身份验证过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言

        本博客主要记录了window10系统安装和配置Google Earth Engine Python API的说明供大家参考。

2.安装Earth Engine API

        安装Google Earth EnginePython API的首选方法是通过Anaconda。

2.1 python 安装

        下载适用于您的操作系统的Anaconda Installer for Python 3.7(或更高版本)。下载后,双击安装程序并将其安装到默认的建议目录中。为Just Me选择一个安装并使用默认设置。注意:如果您的用户名有空格或非英文字符,则会导致问题。在这种情况下,您可以将其安装到C:\anaconda之类的路径中。

(Windows用户)安装后,搜索Anaconda提示启动它。

2.2 创建虚拟环境

        我们将创造一个新的环境来安装地球引擎相关的软件包。输入以下代码以创建一个名为ee的新环境。

conda create --name ee

 

        Anaconda将验证conda命令,并在继续操作之前要求确认,按y,然后输入进行确认。

        创建环境后,将显示Executing transaction:done消息,如果执行不成功,则将标记为失败并显示错误消息。输入代码以激活环境。

conda activate ee

 

2.3 Base环境与自定义环境之前的切换

        现在(base)将替换为(ee),表示环境已激活,现在该环境中的库将不会影响基本环境。此外,这些库只能在此环境中使用,不能从基本环境或其他环境访问。

2.4 安装earthengine api 

        现在,可以使用conda-forge安装earthengine api库输入以下代码,anaconda会提示确认,按yenter键安装库。

conda install -c conda-forge earthengine-api

 

        安装成功后,将显示Executing transaction:done,输入以下代码以安装geemap库。

conda install -c conda-forge geemap

         一旦库安装成功,请输入以下代码来安装jupyter lab,这是一个基于浏览器的用户界面,可用于执行笔记本格式文件中的python命令。

conda install -c conda-forge jupyterlab

        安装成功后,将显示执行事务:完成。要启动它,请输入以下代码并单击enter。 

        将打开一个新的浏览器选项卡,其中包含一个JupterLab实例。单击Notebooks下的Python 3按钮。

注意:不要关闭Anaconda提示符,因为jupyter服务器正在使用此连接运行,如果关闭提示符,连接将中断。         

 

        输入以下代码并单击Run按钮,如果执行成功,则所有库及其依赖项都将成功安装。

import ee
import geemap

 

3. 安装Google Cloud CLI

       Google Earth Engine 使用谷歌云进行身份验证。您还必须安装并初始化Google Cloud命令行工具(CLI)gcloud,然后才能激活Earth引擎API。

3.1 访问gcloud CLI安装指南

        点击网址,选择您的操作系统以查看安装说明。

        安装后,请按照说明配置gcloud CLI。这些说明将指导您如何运行gcloud init命令。

3.2 选择一个GEE 云项目

       你将被要求选择一个谷歌云项目。选择与Google Earth Engine一起使用的项目。您可以访问谷歌云控制台来查看可用的项目名称。

 

        这样你的Google Cloud CLI现在已安装并配置。

4. 身份认证

        要使用ee模块在本地运行Python脚本,必须使用以下步骤完成一次性身份验证。完成身份验证流程后,令牌将永久保存在计算机上,并将由API自动使用。这应该只在您的机器上执行一次。

        Earth Engine API以earthengine命令的形式提供了命令行界面(CLI)。运行该命令以检查它是否已成功安装。

earthengine

 

        如果安装正确,您应该获得GEE中可用命令的摘要,如下图所示:

        通过运行authenticate命令来验证客户端库。此命令将使用gcloud生成一个URL以完成身份验证流。在浏览器中完成登录流程。完成后,您将收到一条成功消息。 

earthengine authenticate

 

4.1 身份验证错误和解决方法

        如果您的身份验证失败,以下是一些提示和解决方法:

  • 如果您的环境是旧的,请使用conda-update earthengine-api升级earthengine api包以获得最新版本。它还有助于创建一个新的环境并在新环境中安装软件包。
  • 如果使用默认的gcloud身份验证方法时出现错误,则可以通过运行earthengine auhentiate--auth_mode=notebook使用另一种身份验证方法

如果成功地使用Pythonshell完成了身份验证。激活您的环境并运行以下命令。

import ee
ee.Authenticate()

        最后,您必须选择需要与GEE API一起使用的谷歌云项目。访问谷歌云控制台以查看可用的项目名称。运行以下命令,并将<project_name>替换为您的项目名称。
 

        现在,环境已准备好运行使用Google Earth Engine  API的Python脚本。 

 

### 使用 Python 裁剪遥感图像以用于深度学习模型训练 为了有效地裁剪遥感图像并将其应用于深度学习模型训练,可以采用多种方法和技术。以下是具体的操作方式: #### 准备环境和安装依赖项 确保已安装必要的库来处理遥感图像以及执行深度学习任务。常用的库包括 `rasterio` 和 `torchvision`。 ```bash pip install rasterio torchvision ``` #### 加载和预览遥感图像 利用 `rasterio` 库加载遥感图像文件,并通过简单的可视化确认其内容。 ```python import rasterio from matplotlib import pyplot as plt with rasterio.open('path_to_your_image.tif') as src: image = src.read() plt.imshow(image[0], cmap='gray') plt.show() ``` #### 定义裁剪函数 编写一个自定义函数来进行图像裁剪操作,该函数接收原始图像路径、目标窗口大小及输出目录作为输入参数。 ```python def clip_raster(input_path, output_dir, window_size=(256, 256)): with rasterio.open(input_path) as dataset: width, height = dataset.width, dataset.height for row in range(0, height, window_size[1]): for col in range(0, width, window_size[0]): win = ((row, min(row + window_size[1], height)), (col, min(col + window_size[0], width))) out_meta = dataset.meta.copy() out_meta.update({ 'height': win[0][1]-win[0][0], 'width' : win[1][1]-win[1][0], 'transform': rasterio.windows.transform(win, dataset.transform)}) clipped_img = dataset.read(window=rasterio.windows.Window.from_slices(*win)) filename = f"{output_dir}/clip_{row}_{col}.tif" with rasterio.open(filename, 'w', **out_meta) as dest: dest.write(clipped_img) clip_raster('input_image.tif', './clips/', window_size=(256, 256))[^1] ``` 此代码片段展示了如何基于指定尺寸切割整个大图成多个较小的部分,这些部分可以直接用作后续深度学习算法中的样本图片。 对于更复杂的场景,比如当需要从Google Earth Engine获取特定区域内的高分辨率卫星影像时,则可以通过API接口调用来完成这一过程[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倾城一少

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值