bzoj2005 [Noi2010]能量采集

题目链接:bzoj2005
题目大意:
有块土地,一共有n列,每列有m棵植物,对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 能量汇集机器的坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植物,则能量损失为1。给出土地的大小n,m,问总的能量损失。

题解:
数论 欧拉
诶,感觉要是认真想想的话还是可以的qwq
设当前坐标为(x=dp,y=dq),gcd(x,y)=d即gcd(p,q)=1,那么从(0,0)到(x,y)只直线上的点有(p,q)、(2p,2q)、…、(x,y),共d个。除去(x,y)的不算,即有gcd(x,y)-1个。
所以ans=ni=1mj=12(gcd(i,j)1)+1
ans=ni=1mj=12gcd(i,j)1=2ni=1mj=1gcd(i,j)nm
1ϕ=u来化

ans=2i=1nj=1md|i,d|jϕ(d)nm

ans=2d=1d=min(n,m)nd×md×ϕ(d)nm

预处理下ϕ(i)及其前缀和,分块就好了

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define N 100100

LL cnt,pri[N/4],phi[N];bool ispri[N];
LL mymin(LL x,LL y){return (x<y)?x:y;}
void Eular(LL lim)
{
    cnt=0;phi[1]=1;
    for (LL i=2;i<=lim;i++)
    {
        if (!ispri[i]) {pri[++cnt]=i;phi[i]=i-1;}
        for (LL j=1;j<=cnt && pri[j]*i<=lim;j++)
        {
            LL k=i*pri[j];
            ispri[k]=true;
            if (i%pri[j]==0)
            {
                phi[k]=pri[j]*phi[i];
                break;
            }
            phi[k]=(pri[j]-1)*phi[i];
        }
    }
    for (LL i=2;i<=lim;i++) phi[i]+=phi[i-1];
}
int main()
{
    //freopen("a.in","r",stdin);
    //freopen("a.out","w",stdout);
    LL n,m,i,lim,r,ans=0;
    scanf("%lld%lld",&n,&m);
    lim=mymin(n,m);Eular(lim);
    for (i=1;i<=lim;i=r+1)
    {
        r=mymin(n/(n/i),m/(m/i));
        ans+=(n/i)*(m/i)*(phi[r]-phi[i-1]);
    }
    ans=2*ans-(n*m);
    printf("%lld\n",ans);
    return 0;
}
发布了202 篇原创文章 · 获赞 21 · 访问量 11万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览