Quantities

time-series data vs cross-sectional data:

  1. time-series data: observations taken over a period of time at a specific spaced time intervals 在一个时间段内以某个时间间隔划分得到的观测值
  2. cross-sectional data: observations taken at a single point in time 在一个时间点下的多个观测值

longitudinal data vs panel data:

  1. longitudinal data: several features for one object duirng a time series 一个时间序列下同一观测实体的多个特征
  2. panel data: one feature for several objects during a time series 一个时间序列下多个观测实体的一个特征

central limit theorem
population with distribution ( μ , σ 2 \mu, \sigma^2 μ,σ2), then the mean x ˉ \bar{x} xˉ of the samples of size n n n from the population has the distribution of ( μ , σ 2 n \mu, \frac{\sigma^2}{n} μ,nσ2) as the smaple size becomes large (sufficiently larg n ≥ 30 n\ge30 n30).
对于一个总体,其分布为( μ , σ 2 \mu, \sigma^2 μ,σ2),那么从中采样,样本数为 n n n,随着样本数变多( n ≥ 30 n\ge30 n30),样本的平均数 x ˉ \bar{x} xˉ满足分布( μ , σ 2 n \mu, \frac{\sigma^2}{n} μ,nσ2)。

standard error of the sample mean = σ n \frac{\sigma}{\sqrt{n}} n σ

degree of freedom in sample with size n: n-1
样本数量为n的样本,自由度为n-1,因为对于某一个分布,最多只有n-1个样本可以自由取值,剩余1个样本的值由那n-1个样本决定。常见例子为,已知3个数字a, b, c的平均值为4,最多只有2个数字可以自由取值,最后一个数字的值将由这2个数字决定 (12-另外2个数字之和)。

Usage of z-statistic or t-statistic
在这里插入图片描述

null hypothesis vs alternative hypothesis

  1. null hypothesis: h 0 h_0 h0, want to reject
  2. alternative hypothesis: H a H_a Ha, want to conclude

对于 h 0 h_0 h0, 可能为 μ = μ 0 \mu=\mu_0 μ=μ0或者 μ ≥ μ 0 \mu\ge\mu_0 μμ0或者 μ ≤ μ 0 \mu\le\mu_0 μμ0,总是包含等号

one-tailed test vs two-tailed test

  1. one-tailed test: x > 0 x>0 x>0等单向条件
  2. two-tailed test: x ≠ 0 x\ne0 x=0等双向条件

对于z-distributed test statistic

  • 拒绝 H 0 H_0 H0假设当z-statistic值不在z-value范围内
  • 无法拒绝 H 0 H_0 H0假设当z-statistic值在z-value范围内
内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值