深度学习最基础理论知识总结 (CS231课程总结,持续更新)

本文是对CS231课程的深度学习基础知识总结,涵盖了损失函数、正则化、卷积神经网络、激活函数等核心概念,旨在帮助读者理解深度学习模型的工作原理。
摘要由CSDN通过智能技术生成

因为有在看CS231学习深度学习的简单知识,所以打算整理成blog,持续更新中。。。

 

一、损失函数loss function

1、SVM:最简单的loss function 

其中为真实label对应的分数,为label j对应的分数,Li为每个样本的分类损失,目的是最大化真实label对应分数。

在初始化时,Li的初始值接近于C-1,其中C为分类的个数,因为所有的分数都接近于0,对应为(C-1)个1相加。

 

所有样本的loss表示为:

2、softmax

 

二、模型正则项

通常为了防止模型过拟合,使得模型在效果和复杂度之间达到平衡,常常引入正则项。不同的正则项都是为了模型简单化,但是对简单的定义各异。

1) L1范式:鼓励稀疏,也就是鼓励权重向量中0的个数,从而使得模型简单化

2) L2范式:鲁棒性更好,控制向量中的整体分布,各个位置的数值均影响模型更好,即各个位置的数值较为平均。

3) dropout:随机将每一层上的一些神经元设为0,常在全连接层使用。训练时间加长,但训练后鲁棒性增强。

4) bach normalization:见下

5) dropconnect:和3不同,不是丢弃神经元,而是丢弃一些权重矩阵

6) stochastic depth:随机丢弃一些层。

 

三、Bach Normalization 

深度学习中,通常为了能让激活函数更好地激活,防止梯度消失或者梯度爆炸 (后面会有解释),需要对特征进行归一化,将特征向量变成均值为0,方差为1的向量</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值