simhash:海量无标签样本的去重算法

一、样本去重的原因

在NLP的工程实践中,经常涉及到样本标注工作。例如,在实体识别中,对实体标注的原则是尽量包括更多的实体,这样才能实现“好而不同”的标注目标。因此,面临大量的无标签样本,就需要我们去重,挑选出尽量不同的样本进行标注。

二、样本去重算法simhash

simhash是样本去重的一种常用算法,本文强调实战应用,不再赘述其具体原理。下面给出一段代码。

# -*- encoding=utf-8 -*-

single_bits = {
   
   }
for x in range(32):
    single_bits[x] = 1 << x

def simhash(str):
    simhash_map = {
   
   }
    for x in range(32):
        simhash
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值