用分部积分推导梯形数值积分公式

引言

在数值积分中,梯形公式是最基本的公式之一,其代数精度为1。

梯形公式的可以从图形中直接得到,也可以先作两点线性插值然后求积分得到(即梯形公式为插值型求积公式)。由于梯形公式是插值型的,由此可得,当 f(x)C(2)[a,b] 时,梯形公式的余项为

RT=baf′′(ξ(x))2(xa)(xb)dx

其中, f′′(ξ(x))2(xa)(xb) 为线性插值余项, ξ(x)[a,b] 且依赖于 x 。利用梯形公式的代数精度为1,我们可以进一步得到
RT=(ba)312f′′(η(x)),η(x)(a,b).


梯形公式

f(x)C(2)[a,b] ,由于

baf(x)dx=baf(x)d(xa)=(ba)f(b)baf(x)(xa)dx


baf(x)dx=baf(x)d(xb)=(ba)f(a)baf(x)(xb)dx

将上面两式相加除以2,得
baf(x)dx===ba2[f(a)+f(b)]12baf(x)[(xa)+(xb)]dxba2[f(a)+f(b)]12baf(x)d[(xa)(xb)]ba2[f(a)+f(b)]+12baf′′(x)(xa)(xb)dx


复合梯形公式

设将 [a,b] 分为 n 等分,令h=(ba)/n xk=a+kh k=0,1,,n 。由前面的推导,得

xk+1xkf(x)dx=h2[f(xk)+f(xk+1)]+12xk+1xkf′′(x)(xxk)(xxk+1)dx

于是
baf(x)dx=Tn+k=0n1xk+1xkf′′(x)Pk(x)dx

其中
Tn=h2k=0n1[f(xk)+f(xk+1)]=h2[f(a)+k=1n1f(xk)+f(b)]

Pk(x)={12(xxk)(xxk+1),0,xkxxk+1

定义以 h 为周期的函数P(x),使
P(x)=P0(x),x[x0,x1]


baf(x)dx==Tn+k=0n1xk+1xkf′′(x)Pk(x)dxTn+baf′′(x)P(x)dx

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值