电池管理系统BMS中SOC算法通俗解析(一)

本文介绍了电池管理系统(BMS)中关键的SOC估算技术,包括开路电压法和电流积分法。开路电压法虽简单但受电池状态影响大,而电流积分法则更可靠但存在采样误差等。文章强调了引入修正系数以减少累积误差的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BMS开发板
BMS开发板:
https://blog.csdn.net/u010474219/article/details/135313436
SOC(state of ge)估计算法是电池管理系统(BMS)开发应用的关键技术之一,传统燃油车有油表,能跑多远,看一眼心里就有数了,换成电动汽车,SOC就是电动汽车的”油表”,所以SOC的准确、稳定与否非常重要。SOC的定义粗略的说就是,SOC=剩余容量/额定容量(满充容量)*100%,更浅显的比喻就是剩余容量就好比汽车里面剩余的油,额定容量就是汽车的油箱容量,SOC就是剩余的”油”和”油箱容量”的比值。这个”剩余的油”和”油箱容量”越精确,用户使用起来就会越放心。
目前主流的SOC估算方法有开路电压法、电流积分法、卡尔曼滤波法和神经网络法。比较常用的是前两种,后两种算法这里不展开讨论。开路电压法其原理是利用电池在长时间静置的条件下,开路电压与SOC存在相对固定的函数关系,从而根据开路电压来估算SOC。以前常用的铅蓄电池电动自行车就是使用这种方法估算SOC。开路电压法简单便捷,但也存在很多缺点:

  1. 电池须经过长期静置,但电动汽车启动频繁,开路电压短时间内很难稳定;

  2. 电池存在电压平台,特别是磷酸铁锂电池,在SOC30%-80%期间,端电压和SOC曲线近似为直线;

  3. 电池处于不同温度或不同寿命时期,尽管开路电压一样,但实际上的SOC差别可能较大;

如下图,我们在使用这种电动自行车,假如当前SOC显示100%,在加速启动下电压下降,电量可能显示80%,停止加速时电压回升,电量又会跳回100%。
在这里插入图片描述
电流积分法估算SOC
目前广泛应用于电动自行车、园林工具、储能等领域。虽然很多不同的BMS厂家都是用电流积分法估算SOC,但是由于各自算法设计、硬件电路、电流采样芯片选择的不同精度也各不相同。电流积分法也叫安时积分法(也叫电流积分法或库仑计数法),其本质是在电池进行充电或放电时,通过累积充进或放出的电量来估算电池的SOC。与其它SOC估算方法相比,电流积分法相对可靠,并且可以动态地估算电池的SOC值,因此被广泛使用。

电流积分法简化公式如下:
在这里插入图片描述
从以上公式不难看出,该估算方法存在着误差,主要来源于三个方面:
在这里插入图片描述

  1. 电流采样造成误差

采样精度采样间隔

  1. 电池容量变化造成误差

温度变化电池老化充放电倍率不同电池自放电

  1. SOC

初始SOC估算困难

最终SOC过程取舍误差

该方法只是以电池的外部特征作为SOC估算依据,在一定程度上忽视了电池自放电率、老化程度和充放电倍率对电池SOC的影响,长期使用也会导致测量误差不断累积扩大,因此需要引入相关修正系数对累积误差进行纠正。

BMS保护板使用的SOC估算方法 请看下一章节

<think>嗯,用户问的是电池EKF SOC算法,我需要详细介绍下。首先,EKF是扩展卡尔曼滤波的缩写,SOC电池的荷电状态,也就是剩余电量。这两个结合起来应该就是用来估计电池剩余电量的算法。 首先得回忆下卡尔曼滤波的基本原理。卡尔曼滤波是种用于线性系统的最优状态估计方法,但电池系统通常是非线性的,所以要用扩展卡尔曼滤波,也就是EKF来处理非线性问题。SOC估计需要结合电池模型,可能用的是等效电路模型或者电化学模型,但EKF般和等效电路模型结合比较多。 接下来要说明EKF在SOC估计中的步骤。可能包括状态方程和观测方程的建立,线性化处理,预测和更新步骤。需要提到电池模型的参数,比如内阻、容量、电压特性等。另外,SOC估计需要测量电压、电流和温度等参数,所以可能涉及到传感器的数据输入。 还要考虑EKF的优势,比如能够处理噪声,实时性好,适用于动态变化的工况。但可能存在的缺点是对模型精度依赖高,如果模型不准确或者参数变化大,估计结果会有偏差。这时候可能需要结合其他方法,比如参数在线辨识或者自适应滤波算法。 另外,用户可能想知道EKF SOC算法的应用场景,比如电动汽车、储能系统等,这些场合对电池管理系统的精度要求高,准确的SOC估计能提高电池使用寿命和安全性。可能还需要提到与其他算法的比较,比如安时积分法、开路电压法,以及它们的优缺点,EKF结合了模型和实际测量,可能更准确。 还要注意用户可能的背景,如果是工程师或学生,可能需要更技术性的解释,比如数学公式和具体步骤。但如果是普通用户,可能需要更通俗的说明。用户的问题用了“介绍下”,可能希望有个全面但不定特别深入的概述。 最后,总结下EKF在电池SOC估计中的流程:建立电池模型,设计EKF算法,实时更新状态估计,结合测量值进行修正。可能还要提到实际应用中的挑战,比如温度变化、电池老化对模型的影响,以及如何应对这些挑战的方法,比如模型参数的自适应调整或者多模型融合。</think>电池的 **EKF SOC 算法** 是种基于 **扩展卡尔曼滤波(Extended Kalman Filter, EKF)** 的电池荷电状态(State of Charge, SOC)估算方法,主要用于实时、动态地估计电池剩余电量。以下是其核心概念和工作原理的详细介绍: --- ### **1. 核心概念** - **SOC(荷电状态)**:表示电池剩余电量占总容量的百分比(例如 SOC=80% 表示剩余 80% 电量),是电池管理系统BMS)的核心参数。 - **EKF(扩展卡尔曼滤波)**:种适用于非线性系统的状态估计算法,通过结合系统模型和实际测量值,动态修正状态估计并降低噪声影响。 --- ### **2. 算法原理** #### **(1)电池模型** EKF 需要依赖电池的数学模型,常用的是 **等效电路模型**(如 Thevenin 模型、RC 模型),描述电池电压、电流与 SOC 的动态关系。 模型方程示例: \[ \begin{cases} SOC_{k+1} = SOC_k - \frac{\eta \cdot I_k \cdot \Delta t}{Q} \\ V_k = OCV(SOC_k) - I_k \cdot R_0 - V_{RC} \end{cases} \] 其中: - \( Q \)电池容量,\( I_k \) 为电流,\( \eta \) 为充放电效率,\( R_0 \) 为内阻,\( OCV(SOC) \) 为开路电压函数,\( V_{RC} \) 为极化电压。 #### **(2)EKF 步骤** 1. **状态预测**: 根据前时刻的 SOC 和电流测量值,预测当前 SOC 和电压: \[ \hat{x}_k^- = f(x_{k-1}, I_{k-1}) \] \( x \) 为状态变量(如 SOC、极化电压等),\( f \) 为非线性状态方程。 2. **协方差预测**: 更新状态估计的不确定性(协方差矩阵 \( P \)): \[ P_k^- = F_{k-1} P_{k-1} F_{k-1}^T + Q \] \( F \) 为状态方程的雅可比矩阵,\( Q \) 为过程噪声协方差。 3. **卡尔曼增益计算**: 结合观测模型(电压方程)和测量噪声 \( R \)计算增益 \( K_k \): \[ K_k = P_k^- H_k^T (H_k P_k^- H_k^T + R)^{-1} \] \( H \) 为观测方程的雅可比矩阵。 4. **状态更新**: 用实际测量的电压 \( V_k \) 修正预测值: \[ x_k = \hat{x}_k^- + K_k (V_k - \hat{V}_k) \] 5. **协方差更新**: 更新协方差矩阵: \[ P_k = (I - K_k H_k) P_k^- \] --- ### **3. 优势** - **动态适应性**:适用于电流剧烈波动的场景(如电动汽车加速/制动)。 - **噪声抑制**:通过融合模型预测与实时测量,降低电流/电压传感器噪声的影响。 - **高精度**:相比安时积分法(易受累积误差影响)或开路电压法(需静置条件),EKF 在动态工况下更可靠。 --- ### **4. 挑战与改进** - **模型依赖性**: 依赖精确的电池模型和参数(如 OCV-SOC 曲线、内阻)。若电池老化或温度变化,需在线参数辨识或自适应 EKF。 - **计算复杂度**: 需实时计算雅可比矩阵,对微控制器性能有定要求。可简化模型或使用无迹卡尔曼滤波(UKF)。 - **初始 SOC 误差**: 需结合开路电压法或其他方法初始化 SOC。 --- ### **5. 应用场景** - 电动汽车(EV/HEV) - 储能系统(ESS) - 无人机、便携式设备 --- ### **总结** EKF SOC 算法通过动态融合电池模型和实时数据,实现了高精度、抗噪声的 SOC 估计,是电池管理系统的核心技术之。其性能高度依赖于模型精度和参数校准,实际应用中常结合其他方法(如滑模观测器、神经网络)进步提升鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

洛溪之恋(广州洛溪光电)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值