数学记录——深入理解结合律

本文深入探讨结合律的概念,通过字符串拼接、函数复合和矩阵相乘等实例阐述其原理。同时,文章分析了满足交换律但不满足结合律的情况,并定义了合法的单运算符表达式及其计算规则。结合律和交换律的结合使得在某些运算中允许任意顺序计算,但无穷级数的处理则展示了它们在无限操作下可能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结合律和交换律,把它们剥离开,再合上。

例子

结合律

满足结合律,但不满足交换律的例子:

字符串拼接 等有序拼接(因为简单,所以本质)

"I"+"love"+"you"=("I"+"love")+"you"="I love"+"you"="I love you"

"I"+"love"+"you"="I"+("love"+"you")="I"+"love you"="I love you"

函数复合

函数是特殊的二元关系 <x,y> belongs to f  <=>  x f y  <=>  f(x)=y,所以

f={<x,y>|f(x)=y}

g={<x,y>|g(x)=y}

h={<x,y>|h(x)=y}

二元关系复合的定义 f°g={<x,y>|There is a 'z': x f z AND z g y} ={<x,y>|There is a 'z': f(x)=z AND g(z)=y } ,所以

f°g={<x,y>|g(f(x))=y}

g°h={<x,y>|h(g(x))=y}

f°g°h=(f°g)°h={<x,y>|There is a 'z': x f°g z AND z h y} ={<x,y>|There is a 'z': g(f(x))=z AND h(z)=y }={

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值