结合律和交换律,把它们剥离开,再合上。
例子
结合律
满足结合律,但不满足交换律的例子:
字符串拼接 等有序拼接(因为简单,所以本质)
"I"+"love"+"you"=("I"+"love")+"you"="I love"+"you"="I love you"
"I"+"love"+"you"="I"+("love"+"you")="I"+"love you"="I love you"
函数复合
函数是特殊的二元关系 <x,y> belongs to f <=> x f y <=> f(x)=y,所以
f={<x,y>|f(x)=y}
g={<x,y>|g(x)=y}
h={<x,y>|h(x)=y}
二元关系复合的定义 f°g={<x,y>|There is a 'z': x f z AND z g y} ={<x,y>|There is a 'z': f(x)=z AND g(z)=y } ,所以
f°g={<x,y>|g(f(x))=y}
g°h={<x,y>|h(g(x))=y}
f°g°h=(f°g)°h={<x,y>|There is a 'z': x f°g z AND z h y} ={<x,y>|There is a 'z': g(f(x))=z AND h(z)=y }={