两个n阶矩阵(方阵)相似,具有什么意义呢?
矩阵可以表示线性变换,基于此,来解释一下:
引子
{a1,…,an}, {b1,…,bn} 是n维向量空间的两组基,把bi用{a1,…,an}表示:
即 bi 在{a1,…,an}下的坐标为Pi.
则{b1,…,bn}可以由{a1,…,an}线性表出:(b1,…,bn) = (a1,…,an)(P1,…,Pn) = (a1,…,an) P
P 叫做基变更矩阵。
设一个向量在{b1,…,bn}坐标系下的坐标是v,又因为(b1,…,bn)v = (a1,…,an) Pv,所以
Pv代表这个向量在{a1,…,an}坐标系下的坐标。
举例来说,b1在{b1,…,bn}坐标系下的坐标是(1,…,0)^T,(^T表示转置,因为这里用的是列向量)
P(1,…,0)^T = P1,即b1在{a1,…,an}下的坐标。在另一方面,(1,…,0)^T 也可以看作是a1在{a1,…,an}坐标系下的坐标,
P(1,…,0)^T 计算向量a1 经过{a1,…,an}坐标系下的变换矩阵P 变换后的向量的坐标:P(1,…,0)^T = P1,
即在{a1,…,an}坐标系下 向量b1的坐标。所以
P 也是 从{a1,…,an}到{b1,…,bn}的线性变换 在{a1,…,an}坐标系下的表示矩阵。
同一个线性变换在不同坐标系的表示矩阵是相似矩阵
该n维向量空间上的线性变换 L :
L(a+b) = L(a) + L(b)
L(ka) = k L(a)
Similarly, [ L(a1),…,L(an) ] 可由{a1,…,an}线性表出:[ L(a1),…,L(an) ]=(a1,…,an) A
其中,
即 L(ai) 在{a1,…,an}下的坐标为 Ai
A即是线性变换 L 在基底{a1,…,an}下的矩阵表示。Why?请看 这里。
同理,[ L(b1),…,L(bn) ]=(b1,…,bn) B, B是线性变换 L 在基底{b1,…,bn}下的矩阵表示。
这样,A 和 B 是同一个线性变换 在不同基下的 表示矩阵。
下面证明 A 和 B 是相似矩阵。
假设 {a1,…,an}, {b1,…,bn} 是n维向量空间的两组基,bi 在{a1,…,an}下的坐标为Pi,
则{b1,…,bn}可以由{a1,…,an}线性表出:(b1,…,bn) = (a1,…,an)(P1,…,Pn) = (a1,…,an) P.
L 是该向量空间内的线性变换,[ L(a1),…,L(an) ]=(a1,…,an) A,[ L(b1),…,L(bn) ]=(b1,…,bn) B
相似矩阵是某个线性变换在不同坐标系的表示矩阵
Matrices A and B are similar.
⇔B=P−1AP
⇔PB=AP,Pisinvertible
{a1,…,an} is a (ordered) basis. Let (b1,…,bn) = (a1,…,an) P, so {b1,…,bn} is a basis too.
(a1,…,an)A = (a1,…,an)(A1,…,An) = [ (a1,…,an)A1 … (a1,…,an)An ],
If we consider (a1,…,an)Ai is L(ai), linear transformation of ai,
then A is a matrix represents a linear transform L under basis {a1,…,an}
(b1,…,bn)B = (b1,…,bn)(B1,…,Bn)=[ (b1,…,bn)B1 … (b1,…,bn)Bn ]
If we consider that (b1,…,bn)Bi is K(bi), linear transformation of bi,
then B is a matrix represents a linear transform K under basis {b1,…,bn}
⇒PB=AP
⇒(a1⋯an)PB=(a1⋯an)AP
⇒(b1⋯bn)B=(a1⋯an)AP
⇒[K(b1)⋯K(bn)]=[L(a1)⋯L(an)]P
⇔(b1⋯bn)=(a1⋯an)P
⇒[L(b1)⋯L(bn)]=[L(a1)⋯L(an)]P
Because a linear transform is fully determined by one chosen basis and {b1,…,bn} is a basis,
therefore K=L.
Conclusion
A是线性变换 L 在基底{a1,…,an}下的表示矩阵
B是线性变换 L 在基底{b1,…,bn}下的表示矩阵
P是 从{a1,…,an}到{b1,…,bn}的线性变换 在{a1,…,an}坐标系下的表示矩阵
当且仅当 B=P−1AP