矩阵相似的意义和解释

矩阵相似意味着它们代表同一个线性变换在不同坐标系下的表示。文章通过向量空间的不同基来阐述这一概念,指出两个相似矩阵分别对应同一线性变换在线性空间的不同基下的坐标表示,并给出了相似矩阵的数学表达式B=P⁻¹AP。结论是,对于线性变换L,在基{a1,…,an}和{b1,…,bn}下,其表示矩阵A和B通过可逆矩阵P联系,即K=L,表明变换在不同基下保持不变。" 117062204,10771831,Android开发:UI适配实战与面试技巧,"['Android开发', 'UI适配', '面试指南', 'Android框架', '职业发展']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

两个n阶矩阵(方阵)相似,具有什么意义呢?
矩阵可以表示线性变换,基于此,来解释一下:

引子

{a1,…,an}, {b1,…,bn} 是n维向量空间的两组基,把bi用{a1,…,an}表示:

bi=P1ia1++Pnian=(a1,,an)P1iPniPi

即 bi 在{a1,…,an}下的坐标为Pi.
则{b1,…,bn}可以由{a1,…,an}线性表出:(b1,…,bn) = (a1,…,an)(P1,…,Pn) = (a1,…,an) P
P 叫做基变更矩阵。

  1. 设一个向量在{b1,…,bn}坐标系下的坐标是v,又因为(b1,…,bn)v = (a1,…,an) Pv,所以
    Pv代表这个向量在{a1,…,an}坐标系下的坐标。
    举例来说,b1在{b1,…,bn}坐标系下的坐标是(1,…,0)^T,(^T表示转置,因为这里用的是列向量)
    P(1,…,0)^T = P1,即b1在{a1,…,an}下的坐标。

  2. 在另一方面,(1,…,0)^T 也可以看作是a1在{a1,…,an}坐标系下的坐标,
    P(1,…,0)^T 计算向量a1 经过{a1,…,an}坐标系下的变换矩阵P 变换后的向量的坐标:P(1,…,0)^T = P1,
    即在{a1,…,an}坐标系下 向量b1的坐标。所以
    P 也是 从{a1,…,an}到{b1,…,bn}的线性变换 在{a1,…,an}坐标系下的表示矩阵。


同一个线性变换在不同坐标系的表示矩阵是相似矩阵

该n维向量空间上的线性变换 L :
L(a+b) = L(a) + L(b)
L(ka) = k L(a)



Similarly, [ L(a1),…,L(an) ] 可由{a1,…,an}线性表出:[ L(a1),…,L(an) ]=(a1,…,an) A
其中,
L(ai)=A1ia1++Anian=(a1,,an)A1iAniAi

即 L(ai) 在{a1,…,an}下的坐标为 Ai


A即是线性变换 L 在基底{a1,…,an}下的矩阵表示。Why?请看 这里
同理,[ L(b1),…,L(bn) ]=(b1,…,bn) B, B是线性变换 L 在基底{b1,…,bn}下的矩阵表示
这样,A 和 B 是同一个线性变换 在不同基下的 表示矩阵。
下面证明 A 和 B 是相似矩阵。


假设 {a1,…,an}, {b1,…,bn} 是n维向量空间的两组基,bi 在{a1,…,an}下的坐标为Pi,
则{b1,…,bn}可以由{a1,…,an}线性表出:(b1,…,bn) = (a1,…,an)(P1,…,Pn) = (a1,…,an) P.

L 是该向量空间内的线性变换,[ L(a1),…,L(an) ]=(a1,…,an) A,[ L(b1),…,L(bn) ]=(b1,…,bn) B

bi=(a1an)P1iPniL(bi)=[L(a1)L(an)]P1iPni[L(b1)L(bn)]=[L(a1)L(an)]P(b1bn)B=(a1an)AP(a1an)PB=(a1an)APPB=APB=P1AP


相似矩阵是某个线性变换在不同坐标系的表示矩阵

Matrices A and B are similar.
B=P1AP
PB=AP,Pisinvertible

{a1,…,an} is a (ordered) basis. Let (b1,…,bn) = (a1,…,an) P, so {b1,…,bn} is a basis too.

(a1,…,an)A = (a1,…,an)(A1,…,An) = [ (a1,…,an)A1 … (a1,…,an)An ],
If we consider (a1,…,an)Ai is L(ai), linear transformation of ai,
then A is a matrix represents a linear transform L under basis {a1,…,an}

(b1,…,bn)B = (b1,…,bn)(B1,…,Bn)=[ (b1,…,bn)B1 … (b1,…,bn)Bn ]
If we consider that (b1,…,bn)Bi is K(bi), linear transformation of bi,
then B is a matrix represents a linear transform K under basis {b1,…,bn}

PB=AP
(a1an)PB=(a1an)AP
(b1bn)B=(a1an)AP
[K(b1)K(bn)]=[L(a1)L(an)]P

(b1bn)=(a1an)P
[L(b1)L(bn)]=[L(a1)L(an)]P

Because a linear transform is fully determined by one chosen basis and {b1,…,bn} is a basis,
therefore K=L.

Conclusion

A是线性变换 L 在基底{a1,…,an}下的表示矩阵
B是线性变换 L 在基底{b1,…,bn}下的表示矩阵
P是 从{a1,…,an}到{b1,…,bn}的线性变换 在{a1,…,an}坐标系下的表示矩阵

当且仅当 B=P1AP

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值