AIGC小说创作风格融合:人机协作的最佳实践案例
关键词:AIGC(人工智能生成内容)、风格融合、人机协作、文本生成模型、创作流程优化
摘要:本文聚焦AIGC(人工智能生成内容)与人类作家在小说创作中的风格融合实践,系统解析从技术原理到实战落地的全流程。通过拆解风格特征提取、模型微调、Prompt工程等核心技术,结合科幻与悬疑风格融合的真实案例,揭示人机协作中“人类创意主导+AI效率赋能”的最佳模式。文章覆盖技术原理、数学模型、实战代码、应用场景及未来趋势,为作家、开发者及文学研究者提供可复用的方法论。
1. 背景介绍
1.1 目的和范围
随着AIGC技术的爆发式发展,人工智能已从“辅助工具”升级为“创作伙伴”。但单纯依赖AI生成的小说常面临“风格割裂”“情感空洞”等问题,而人类作家则受限于创作效率与跨风格尝试成本。本文聚焦“风格融合”这一核心命题,探讨如何通过人机协作实现:
- 跨风格(如科幻与悬疑、古典与现代)的自然融合;
- 保留人类作者核心叙事逻辑的同时,利用AI扩展风格边界;
- 建立可复用的协作