跳格子问题

从1号格子开始,每次以1/2的概率跳一格或两格,直到落在4的倍数格子上结束。探讨此问题的期望步数,涉及到条件期望和全期望公式。证明过程简洁,可通过实例理解随机变量的期望计算,如从不同格子出发到结束所需步数的期望值相等。
摘要由CSDN通过智能技术生成

有1,2,3,......无穷个格子,从1号格子出发,每次1/2概率向前跳一格,1/2概率向前跳两格,

走到格子编号为4的倍数时结束,结束时 期望走的步数为____。(牛客网)


要用到 条件期望的概念 和 全期望公式(离散情况的):

$$E(X)=\sum_{y}P(Y=y)E(X|Y=y)$$

我印象中没学过这个公式(浙大盛骤第四版),这次是发掘新知识 :-D

证明较简单,套定义。

举例来理解,

全体的加权平均 = 部分的加权平均 再按各部分比重*的加权平均。*比重是某部分所含元素数目

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值