变分贝叶斯估计:KL散度及变分自由能

本文详细介绍了KL散度在变分贝叶斯中的作用,包括其定义、性质以及在度量近似后验分布与真实后验分布差异的应用。重点阐述了变分推断中的变分自由能概念,以及它与最大化证据下界的关联,强调了在优化过程中的策略和目标。
摘要由CSDN通过智能技术生成

KL散度(KL距离)

KL(Kullback-Leibler)散度,也称为KL距离或相对熵,是用于度量两个概率分布之间差异的一种指标。在变分贝叶斯方法中,KL散度经常被用来度量近似后验分布与真实后验分布之间的差异。

对于两个概率分布 P 和 Q,其KL距离定义为:

D_{\mathrm{KL}}(P \| Q)=\sum_{i} P(i) \log \left(\frac{P(i)}{Q(i)}\right)

或者在连续分布的情况下:

D_{\mathrm{KL}}(P \| Q)=\int P(x) \log \left(\frac{P(x)}{Q(x)}\right) dx

KL距离的性质包括:

  1. 非负性: 对于任意的 P 和 Q,KL距离始终非负:DKL​(P∣∣Q)≥0。等号成立当且仅当 P 和 Q 是相同的分布。

  2. 非对称性: KL距离是非对称的,即一般情况下 DKL​(P∣∣Q)≠DKL​(Q∣∣P)。

在变分贝叶斯中,KL距离经常用于测量变分分布(近似后验分布)和真实后验分布之间的差异。具体来说,在变分推断中,我们试图找到一个与真实后验分布最接近的分布,使得KL距离最小。这可以通过最小化KL散度来找到最优的变分分布,从而近似真实的后验分布。在实际的变分贝叶斯推断中,通常是通过最大化变分下界来近似最小化KL散度,因为直接最小化KL散度可能不太容易。这被称为变分推断的最大化证据下界(Variational Inference via Maximum Lower Bound, VI-MaxELBO)方法。


变分自由能

变分自由能(Variational Free Energy)是在变分推断(Variational Inference)中使用的一个概念,用于量化近似分布与真实后验分布之间的差异。它是变分推断中的一个目标函数,通过最小化变分自由能,可以找到一个近似分布,使其尽可能接近真实的后验分布。

变分自由能的表达式通常如下:

F(Q)=D_{K L}(Q \| P)+\mathbb{E}_{Q}[\log P(X, Z)-\log Q(Z)]

其中,Q 是我们希望找到的近似分布,P 是真实的后验分布,X 是观测数据,Z 是未知的潜在变量。解释上述表达式的各项:

  1. 第一项 DKL​(Q∣∣P): 衡量了近似分布 Q 与真实后验分布 P 之间的差异。KL 散度是非负的,为零时表示两个分布相等。因此,最小化这一项是为了使近似分布尽可能接近真实后验。

  2. 第二项 EQ​[logP(X,Z)−logQ(Z)]: 这一项包含了对数似然项和熵项。对数似然项 logP(X,Z) 表示在给定参数 Z 的情况下观测数据的似然。熵项 logQ(Z) 表示近似分布 Q 的熵,即其不确定性。这一项的目标是使得近似分布对观测数据有较好的似然匹配,同时保持分布的多样性,即不确定性。

通过最小化变分自由能,我们在近似分布的选择中取得了折中,同时考虑了与真实后验的接近度和模型对观测数据的拟合。这一过程通常通过迭代的方式进行,例如坐标下降、梯度下降等方法,不断调整近似分布的参数以使得变分自由能达到最小值。


最大化证据下界

变分自由能(Variational Free Energy)与最大化证据下界(Evidence Lower Bound, ELBO)之间有密切的关系。事实上,变分自由能就是 ELBO 的负值。理解这一关系有助于解释变分推断中的目标和优化过程。在变分推断中,我们考虑一个真实后验分布P(Z∣X) 和一个近似分布Q(Z)。为了近似真实后验分布,我们希望最大化证据下界,该下界定义为:

\mathrm{ELBO}=\mathbb{E}_{Q}[\log P(X, Z)-\log Q(Z)]

其中:

  • Q(Z) 是我们希望找到的近似后验分布。
  • P(X,Z) 是观测数据 X 和潜在变量 Z 的联合概率分布。

ELBO由两项组成:

  1. 对数似然项EQ​[logP(X,Z)]: 衡量了近似分布 Q(Z) 对观测数据的似然匹配程度。这一项希望近似分布能够较好地拟合观测数据。

  2. 熵项 −EQ​[logQ(Z)]: 衡量了近似分布 Q(Z) 的不确定性,即熵的期望。这一项希望近似分布越不确定越好,以便能够灵活地适应潜在变量的分布。

将 ELBO 表示成期望和的形式,其中包含对数似然项和熵项。通过最大化 ELBO,我们可以在保持对观测数据拟合良好的同时,尽量使近似分布Q(Z) 接近真实后验分布 P(Z∣X)。然而,为了方便优化问题,我们通常会考虑变分自由能,即 ELBO 的负值:

F(Q)=-\mathrm{ELBO}=-\mathbb{E}_{Q}[\log P(X, Z)-\log Q(Z)]

变分自由能与最大化证据下界是等价的,因为最大化 ELBO 的过程等价于最小化其负值,即最小化变分自由能,且通常通过迭代的方式进行。这是因为 ELBO 本身是一个负值,所以在实际优化过程中,我们通常考虑的是最小化变分自由能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DoYoungExplorer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值