大数据任务调度:DolphinScheduler、Airflow 实战(调度策略、任务依赖)

1. 引言

在大数据领域,任务调度是数据处理流程的核心环节。无论是离线批处理,还是实时数据流转,都需要一个高效、稳定的调度系统来 orchestrate(编排)各个任务,确保数据按预期流转,避免任务失败或数据不一致。

目前,Apache DolphinSchedulerApache Airflow 是两种主流的任务调度工具,它们广泛用于数据工程领域,提供任务依赖管理、失败重试、并发控制等能力。

本文将对这两种调度工具进行详细解析,并结合实际案例,讲解如何优化调度策略和任务依赖管理。


2. 任务调度的核心概念

在探讨 DolphinScheduler 和 Airflow 之前,我们先了解几个核心概念:

2.1 DAG(有向无环图)

任务调度通常采用 DAG(Directed Acyclic Graph)结构,每个节点代表一个任务,边表示任务间的依赖关系。

示例 DAG 结构:

    A → B → D
    |      ↑
    └──→ C

在这个 DAG 里,任务 A 先执行,然后 B 和 C 并行执行,最后 D 需要等 B 和 C 都完成后才能执行。

2.2 任务类型

  • 数据抽取任务(ETL):定期从数据库、API 或数据湖拉取数据。

  • 数据转换任务:执行 SQL 任务、Spark 任务或 Python 脚本,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值