Flink SQL & DataStream 融合开发模式与动态配置热加载机制实战

一、为什么需要 SQL 与 DataStream 融合开发?

在实时数仓构建中,Flink SQL 的易用性和声明式优势广受欢迎;但遇到业务逻辑复杂、需要灵活控制时,DataStream API 提供了不可替代的灵活性。

而现实中,我们常常遇到如下痛点:

场景 问题 解决方式
多业务线、多个 Kafka Topic,字段结构不同 Flink SQL 难以一套规则搞定所有 DataStream 控制更灵活
希望部分流程用 SQL 快速处理,部分自定义处理更复杂逻辑 Flink SQL + 自定义 UDF 不够直观 融合开发解决
希望动态控制字段标准化规则 / 字典加载逻辑 静态代码配置难维护 动态配置 + 热加载机制

因此,融合 SQL 与 DataStream,配合配置热加载机制,成为构建灵活、高可维护的实时标准化处理框架的关键路径。


二、融合开发整体架构图

📊 F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值