Flink + Kafka 数据血缘追踪与审计机制实战

一、引言

在实时数据系统中,“我的数据从哪来?去往何处?” 是业务方最关心的问题之一。

尤其在以下场景下:

  • 📉 金融风控:模型出现预警,需回溯数据源链路。

  • 🧾 合规审计:监管要求提供数据全流程路径。

  • 🛠 运维排查:Kafka Topic 数据乱序或错发后快速定位来源。

因此,构建一套数据血缘追踪与审计机制,对稳定、高可用、可观测的实时数据平台至关重要。


二、实时数仓中常见的数据血缘诉求

场景 血缘粒度 举例
数据来源标识 数据级别 明确某条日志来自哪个设备、哪种业务
加工链路记录 算子级别 记录 Flink 中每道转换过程(如字段计算、过滤)
多层 Topic 血缘 表级别 明确某指标来源于哪些 Topic/表
稽核审计支持 时间戳/任务级别 支持特定时间段的数据回溯
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值