Convolutional Neural Networks(CNN) 有关概念

在浅层神经网络中,我们一般采用fully connected layer(全连接层)进行层和层的连接。
Output=f(Wx+b) ,其中 f 是一个非线性函数。
从上面的表达式中,我们可以看出,这层的任何一个输出神经元都和全部的输入神经元相连。

随着网络的加深,如何加快训练速度变成了一个很现实的问题。我们采取了一种方法:CNNs来显著减少参数个数,从而加快了训练速度。

CNNs基于如下从认知心理学得到的一个现象:
人识别图像的,对信息进行最初级加工的神经元的任务是感知图像的一个局部是否有一个边缘(Edge)。

这句话里面值得借鉴的点是:“局部”。

在CNN中,局部被体现在了两个方面。
1.一个输出神经元不必和所有输入神经元相连:连接局部性
2. 连接到同一个输出神经元的输入神经元要在同一个局部:位置局部性。

于是就有如下的卷积函数。

yij=fks({xsi+di;sj+dj}0di,dj<k;Wks)

其中
xij 表示位于(i,j)处的输入
yij 表示位于(i,j)处的输出
s 表示跨度(stride)
Wks表示函数 fks 的参数
k (kernel size)表征感受野(receptive field)的大小(k×k)
感受野就是连接到特定输出神经元的输入神经元的统称。
从上面的式子可以看出,相邻的两个输出神经元对应的感受野的间隔为s,每一个输出神经元的感受野的大小为k
更需要指出的是, fks i,j 无关,也就是对于不同的输出神经元,他们用的卷积函数是完全一样的,也就是对于不同的输出神经元,我们都同时用同一种参数。

总结一下,CNN减少参数的手段:
1. 连接局部性,一个输出神经元不用和所有的输入神经元相连
2. 空间局部性,与一个输出神经元连接的输入神经元空间位置上相邻
3. 参数一致性,所有的输出神经元共享同一套参数。

卷积神经网络(Convolutional Neural NetworksCNN)是一种强大的深度学习算法,主要用于图像识别和处理。CNN的结构图主要包括卷积层、激活函数、池化层和全连接层。 卷积层是CNN的核心组成部分,由多个卷积核组成。每个卷积核在图像上进行滑动操作,通过计算卷积操作得到新的特征图。卷积操作可以提取出图像的局部特征,并保留了空间结构信息。 在卷积层之后,激活函数(如ReLU)被应用于特征图中的每个元素,以引入非线性。激活函数可以增加网络的表达能力,并促使网络学习更复杂的特征。 池化层用于减少特征图的维度,它通过将特定区域内的特征值进行聚合,并选择最显著的特征进行保留。常用的池化操作包括最大池化和平均池化。池化层可以减少特征图的大小,从而降低参数数量,减小计算量。 最后,全连接层将池化层输出的特征图转换为向量形式,并连接到输出层。全连接层的作用是对特征进行分类或回归预测。它们通常由全连接神经元组成,每个神经元与上一层的所有神经元相连。 在CNN的结构图中,卷积层和池化层可以多次堆叠,以增加网络的深度。这种多层次的结构可以使网络学习到更高级别的抽象特征。此外,CNN还可以通过添加批量归一化、dropout等技术来提高网络的性能和泛化能力。 总之,CNN的结构图展示了卷积神经网络的层次组织和数据流动方式,有助于理解其工作原理和网络结构的设计。通过逐层堆叠不同的层,CNN可以有效地提取图像中的特征,并在分类、目标检测等任务中取得优秀的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值