Slater条件理解和证明

考虑凸优化问题:
min ⁡ f 0 ( x )   s . t .      f i ( x ) ≤ 0 , i = 1 , . . . , k        g i ( x ) ≤ 0 , i = 1 , . . . , m \begin{aligned} &\quad \min f_0(x) &\,\\ &\quad s.t.\,\,\,\, f_i(x) \le 0,i=1,...,k\\ &\qquad \,\,\,\,\,\, g_i(x) \le 0,i=1,...,m \end{aligned} minf0(x)s.t.fi(x)0,i=1,...,kgi(x)0,i=1,...,m
其中 f i f_i fi是凸函数, g g g是仿射函数(等式仿射约束可以转化为两个仿射不等式约束)
Slater条件:如果存在一个 x ~ ∈ r e l i n t   D ( 定 义 域 相 对 内 部 ) \tilde{x} \in relint\, \mathcal{D}(定义域相对内部) x~relintD(),使得
f i ( x ) < 0 , i = 1 , ⋯ k , g j ( x ) ≤ 0 , j = 1 , ⋯   , m f_i(x) <0,i=1,\cdots k,g_j(x)\le 0,j=1,\cdots,m fi(x)<0,i=1,k,gj(x)0,j=1,,m
则强对偶成立
先贴一个Stephen Boyd凸优化上的简化证明
在这里插入图片描述
在这里插入图片描述
这个证明做了如下的简化:第一,优化目标没有仿射不等式约束;第二,假设内部非空,而

Slater条件只假设点在相对内部中;第三,假设仿射等式约束中 A A A行满秩
第三个简化是无关紧要的,只不过做了这个假设后证明简单

A A A行满秩的假设可以去掉,只需要证明如果不是行满秩(存在冗余等式),那么可以通过一个线性变换,使得约束行满秩,且经过变换之后Lagrange函数的最优值不变,即强对偶性不变

而第一和第二是属于条件的变化,放宽了条件,使得它适用范围更窄

如果不存在仿射约束,有一个简单的证明:见简化版Slater条件证明
如果不存在仿射不等式约束,相对内点这个条件可以去掉

相对内点这个假设的作用在于,仿射函数 h h h如果在一个凸集上C的一个相对内点的值为0,那么它在这个凸集上的值要么为恒值0,要么有正也有负
证:设 f ( a ) = 0 f(a)= 0

  • 12
    点赞
  • 60
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值