测度论笔记(一)

课程视频:B站地址

緒論

在R上,由长度我们自然想到将其扩展到全部 R \mathbb{R} R的子集,所以我们找一个满足以下四个准则的函数
1 )和原长度相容
2 )定义在所有子集上
3 )平移不变性
4 )可数可加性
下面证明,由选择公理得到这样的函数是不存在的,也就是我们不能对 R \mathbb{R} R的所有子集都定义类似长度的东西。所以才引入可測的概念,以及測度。
證明:
定義 R \mathbb{R} R上的一個等價關係 x ∼ y x\sim y xy如果 y − x ∈ Q y - x \in \mathbb{Q} yxQ,用[x]表示x所在等價類。
定義商集 Λ = R / ∼ \Lambda = \mathbb{R} / \sim Λ=R/,則 Λ \Lambda Λ顯然是不可數集(因爲如果是可數的,則 R \mathbb{R} R就變成可數個可數集的并集,矛盾)
根據選擇公理,可以選擇每個等價類的一個元素構成一個新的集合,我們可以選取 Ω ⊆ ( 0 , 1 ) \Omega \subseteq (0,1) Ω(0,1)

這時,有 { Ω + q = Ω + p ( Ω + q ) ∩ ( Ω + p ) = ∅ p , q ∈ Q \left\{ \begin{aligned} \Omega + q = \Omega + p \\ (\Omega + q) \cap (\Omega + p) = \varnothing \end{aligned} \right. p,q \in \mathbb{Q} { Ω+q=Ω+p(Ω+q)(Ω+p)=p,qQ

因爲如果 ( Ω + q ) ∩ ( Ω + p ) ≠ ∅ (\Omega + q) \cap (\Omega + p) \ne \varnothing (Ω+q)(Ω+p)=,取 x ∈ ( Ω + q ) ∩ ( Ω + p ) x \in (\Omega + q) \cap (\Omega + p) x(Ω+q)(Ω+p)。則
x = α + p = β + q ,   α , β ∈ Ω ⇒ α − β = q − p ∈ Q x= \alpha + p = \beta + q, \, \alpha, \beta \in \Omega \Rightarrow \alpha - \beta = q - p \in \mathbb{Q} x=α+p=β+q,α,βΩαβ=qpQ
這和 α , β \alpha, \beta α,β為代表元矛盾

因爲 ∑ q ∈ Q , − 1 < q < 1 ( Ω + q ) ⊆ ( − 1 , 2 ) \sum_{q\in \mathbb{Q}, -1<q<1} (\Omega + q) \subseteq (-1, 2) qQ,1<q<1(Ω+q)(1,2)
所以 λ ( ∑ q ∈ Q , − 1 < q < 1 ( Ω + q ) ) ≤ λ ( ( − 1 , 2 ) ) = 3 \lambda(\sum_{q\in \mathbb{Q}, -1<q<1} (\Omega + q)) \le \lambda((-1,2)) = 3 λ(qQ,1<q<1(Ω+q))λ((1,2))=3
再由可數可加性和平移不變性得
λ ( ∑ q ∈ Q , − 1 < q < 1 ( Ω + q ) ) = ∑ q ∈ Q , − 1 < q < 1 λ ( Ω + q ) = ∑ q ∈ Q , − 1 < q < 1 λ ( Ω ) \lambda(\sum_{q\in \mathbb{Q}, -1<q<1} (\Omega + q)) = \sum_{q\in \mathbb{Q}, -1<q<1} \lambda(\Omega + q) = \sum_{q\in \mathbb{Q}, -1<q<1} \lambda(\Omega) λ(qQ,1<q<1(Ω+q))=qQ,1<q<1λ(Ω+q)=qQ,1<q<1λ(Ω)

λ ( Ω ) = 0 \lambda(\Omega) = 0 λ(Ω)=0

但是這和 ( 0 , 1 ) ⊆ ∑ q ∈ Q , − 1 < q < 1 ( Ω + q ) (0,1) \subseteq \sum_{q\in \mathbb{Q}, -1<q<1} (\Omega + q) (0,1)qQ,1<q<1(Ω+q) λ ( ( 0 , 1 ) ) = 1 \lambda((0,1)) = 1 λ((0,1))=1產生矛盾,所以不存在這樣的測度。

下面證明 ( 0 , 1 ) ⊆ ∑ q ∈ Q , − 1 < q < 1 ( Ω + q ) (0,1) \subseteq \sum_{q\in \mathbb{Q}, -1<q<1} (\Omega + q) (0,1)qQ,1<q<1(Ω+q)
任取 x ∈ ( 0 , 1 ) x \in (0,1) x(0,1) x = [ x ] + q , [ x ] ∈ Ω ⊆ ( 0 , 1 ) , q ∈ Q x = [x] + q, [x] \in \Omega \subseteq (0,1) ,q\in \mathbb{Q} x=[x]+q,[x]Ω(0,1),qQ
q = x − [ x ] ∈ ( − 1 , 1 ) q = x - [x] \in (-1, 1) q=x[x](1,1)得證。

一些基本概念

半代数 semi-algebra

定义: S ⊂ S ( Ω ) \mathcal{S} \subset S(\Omega) SS(Ω)(幂集的子集) 是半代数,如果
  (1) Ω ∈ S \Omega \in \mathcal{S} ΩS (包含全集)
  (2) A , B ∈ S ⇒ A ∩ B ∈ S A,B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S} A,BSABS (有限交闭合)
  (3) ∀ A ∈ S ⇒ ∃ E 1 , . . . , E n , A C = ∑ i = 1 n E j \forall A \in \mathcal{S} \Rightarrow \exist E_1,...,E_n, A^C=\sum_{i = 1}^n E_j ASE1,...,En,AC=i=1nEj (补集可以有限分解)

这里使用求和符号,表示的是 E j E_j Ej之间是互不相交的,实际上由于(2)的存在,替换成并也是一样的。只不过在某些证明中,直接利用这个互不相交性质能够更容易证明

例子: Ω = R \Omega = \mathbb{R} Ω=R ,取: S \mathcal{S} S为以下集合元素的有限并(容易验证)
   R ,    { ( a , b ] , a < b , a , b ∈ R } ,    { ( − ∞ , b ] , b ∈ R } , { ( a , ∞ ) ,    a ∈ R } ,    ∅ \mathbb{R},\,\,\{(a,b] ,a<b, a,b \in \mathbb{R}\},\,\,\{(-\infty,b], b\in \mathbb{R}\},\{(a,\infty), \,\,a\in \mathbb{R}\},\,\,\varnothing R,{ (a,b],a<b,a,bR},{ (,b],bR},{ (a,),aR},

例子2:取 Ω = R 2 \Omega = \mathbb{R}^2 Ω=R2,用上面例子中 S \mathcal{S} S的直积定义为 S \mathcal{S} S即可

代数 algebra

定义: A ⊂ S ( Ω ) \mathcal{A} \subset S(\Omega) AS(Ω)(幂集的子集) 是代数,如果
  (1) Ω ∈ A \Omega \in \mathcal{A} ΩA (包含全集)
  (2) A , B ∈ A ⇒ A ∩ B ∈ A A,B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A} A,BAABA (有限交闭合)
  (3) A ∈ A ⇒ A C ∈ A A\in \mathcal{A} \Rightarrow A^C \in \mathcal{A} AAACA(这一条不同于半代数,更加严格,补运算闭合)

第二条等价于有限并运算闭合

σ \sigma σ-algebra

定义: F ⊂ S ( Ω ) \mathcal{F} \subset S(\Omega) FS(Ω)(幂集的子集) 是 σ \sigma σ-代数,如果
  (1) Ω ∈ F \Omega \in \mathcal{F} ΩF (包含全集)
  (2) A j ∈ F ⇒ ∩ A j ∈ F A_j \in\mathcal{F} \Rightarrow \cap A_j\in \mathcal{F} AjFAjF (可数交闭合,比代数更严格)
  (3) A ∈ F ⇒ A C ∈ F A \in \mathcal{F} \Rightarrow A^C \in \mathcal{F} AFACF(补运算闭合)

第二条可改为可数并闭合

注:任意代数的并是代数,任意 σ \sigma σ-代数的并是 σ \sigma σ-代数(任意可以是不可数个,由定义易得)

生成代数

定义:子集族 C \mathcal{C} C生成的( σ − \sigma- σ)代数,是包含 C \mathcal{C} C的最小( σ − \sigma- σ)代数,即所有包含它的( σ − \sigma- σ)代数的交

半代数生成代数

引理: S ⊆ S ( Ω ) \mathcal{S}\subseteq S(\Omega) SS(Ω)是半代数, A ( S ) \mathcal{A}(\mathcal{S}) A(S) S \mathcal{S} S的生成代数,如果任意 A ( S \mathcal{A}(\mathcal{S} A(S中的元素
A ∈ A ( S ) ⇔ ∃ E j ∈ S , 1 ≤ j ≤ n , A = ∑ j = 1 n E j A\in \mathcal{A}(\mathcal{S}) \Leftrightarrow \exists E_j \in \mathcal{S},1 \le j \le n, A = \sum_{j=1}^n E_j AA(S)EjS,1jn,A=j=1nEj
(即让有限并闭合)

注:同样这里求和符号也是表示E之间不相交,等价于并。但是用不相交使得依赖于生成代数性质的命题更容易证明

证明: ⇐ \Leftarrow
  令 A = ∑ j = 1 n E j , E j ∈ S ⊆ A ( S ) A = \sum_{j=1}^n E_j, E_j \in \mathcal{S} \subseteq{\mathcal{A}(\mathcal{S})} A=j=1nEj,EjSA(S), 由于代数关于有限并闭合,故 A ∈ A ( S ) A\in \mathcal{A}(\mathcal{S}) AA(S)
⇒ \Rightarrow
  定义 B = { ∑ j = 1 n F j , F j ∈ S } \mathcal{B}=\{\sum_{j=1}^n F_j , F_j\in \mathcal{S}\} B={ j=1nFj,FjS},容易证明 B \mathcal{B} B是包含 S S S的代数(验证它符合代数的三个条件即可),所以有 A ( S ) . ⊆ B \mathcal{A}(\mathcal{S}). \subseteq \mathcal{B} A(S).B。另外,由于代数必须对有限并闭合,所以 B ⊆ A ( S ) \mathcal{B} \subseteq \mathcal{A}(S) BA(S)。故 A ( s ) = B = { ∑ j = 1 n F j , F j ∈ S } \mathcal{A}(s) = \mathcal{B}=\{\sum_{j=1}^n F_j , F_j\in \mathcal{S}\} A(s)=B={ j=1nFj,FjS}

可加性

定义:定义在集族 C ⊆ S ( Ω ) , ∅ ∈ C \mathcal{C} \subseteq S(\Omega), \varnothing \in \mathcal{C} CS(Ω),C上的函数 μ : C → R + ∪ { + ∞ } \mu :\mathcal{C} \rightarrow \mathbb{R}_+ \cup \{+\infty \} μ:CR+{ +}称为可加的,如果
  (1) μ ( ∅ ) = 0 \mu(\varnothing) = 0 μ()=0
  (2) E 1 , E 2 , . . . , E n ∈ C E_1, E_2,...,E_n \in \mathcal{C} E1,E2,...,EnC,且 E = ∑ j = 1 n E j ∈ C ⇒ μ ( E ) = ∑ j = 1 n μ ( E j ) E=\sum_{j=1}^n E_j \in \mathcal{C} \Rightarrow \mu(E)= \sum_{j=1}^n \mu(E_j) E=j=1nEjCμ(E)=j=1nμ(Ej)

注:由(2)可知如果存在 A , μ ( A ) < ∞ A, \mu(A) < \infty A,μ(A)<,那么它蕴含了 μ ( ∅ ) = 0 \mu(\varnothing) = 0 μ()=0,所以(1)也可改成存在 A , μ ( A ) < ∞ A, \mu(A) < \infty A,μ(A)<

可加性蕴含包含关系的大小

命题: E ⊆ F , E , F ∈ C , F \ E ∈ C , 则 μ E\subseteq F,E,F \in \mathcal{C},F\backslash E \in \mathcal{C}, 则\mu EF,E,FC,F\EC,μ满足可加性,则:
μ ( E ) ≤ μ ( F ) \mu(E) \le \mu(F) μ(E)μ(F)

可加性的例子

1.离散测度
对于任意一个可数集 Ω \Omega Ω,集族 C ⊆ S ( Ω ) \mathcal{C} \subseteq S(\Omega) CS(Ω),任取一组可数点 { x j ∈ Ω , j ≥ 1 } \{x_j \in \Omega, j \ge 1 \} { xjΩ,j1},另外取任意一组可数非负数 { P j , k ≥ 1 } \{P_j, k\ge 1\} { Pj,k1} x j x_j xj形成配对。对于任意 A ∈ C A\in \mathcal{C} AC定义 μ ( A ) = ∑ j ≥ 1 P j 1 { x j ∈ A } \mu(A) = \sum_{j\ge 1} P_j \mathbb{1} \{x_j \in A\} μ(A)=j1Pj1{ xjA} (markdown中不知道怎样打出指示函数1)

可数可加性 σ − \sigma- σadditive

定义:定义在集族 C ⊆ S ( Ω ) , ∅ ∈ C \mathcal{C} \subseteq S(\Omega), \varnothing \in \mathcal{C} CS(Ω),C上的函数 μ : C → R + ∪ { + ∞ } \mu :\mathcal{C} \rightarrow \mathbb{R}_+ \cup \{+\infty \} μ:CR+{ +}称为可数可加的,如果
  (1) μ ( ∅ ) = 0 \mu(\varnothing) = 0 μ()=0
  (2) E j ∈ C , j ≠ k , E j ∩ E k = ∅ E_j \in \mathcal{C},j\ne k, E_j\cap E_k =\varnothing EjC,j=k,EjEk=,且 E = ∑ j = 1 E j ∈ C ⇒ μ ( E ) = ∑ j = 1 μ ( E j ) E=\sum_{j=1} E_j \in \mathcal{C} \Rightarrow \mu(E)= \sum_{j=1} \mu(E_j) E=j=1EjCμ(E)=j=1μ(Ej)
(把第二条扩展到可数并)

不满足可数可加性的例子

Ω = ( 0 , 1 ) , C = { ( a , b ] , 0 ≤ a < b < 1 } , μ : C → R + ∪ { + ∞ } \Omega = (0,1), \mathcal{C} = \{(a,b], 0 \le a < b < 1\} ,\mu:\mathcal{C} \rightarrow R_+ \cup \{+\infty \} Ω=(0,1),C={ (a,b],0a<b<1}μ:CR+{ +}
μ ( ( a , b ] ) = { + ∞ , a = 0 b − a , a = 0 \mu((a,b])=\left\{ \begin{aligned} +\infty, a=0 \\ b - a,a=0 \end{aligned} \right. μ((a,b])={ +,a=0ba,a=0

因为 ( 0 , 1 ] = ∑ k ≥ 1 ( 1 k + 1 , 1 k ] (0,1] = \sum_{k\ge 1} (\frac{1}{k+1},\frac{1}{k}] (0,1]=k1(k+11,k1]
但是 μ ( ( 0 , 1 ] ) = ∞ \mu((0,1]) = \infty μ((0,1])= , μ ( ∑ ( 1 k + 1 , 1 k ] ) = 0 \mu(\sum (\frac{1}{k+1},\frac{1}{k}])=0 μ((k+11,k1])=0,两边不相等

(sigma/半)代數上,滿足(sigma) 可加性的如上的集函數,稱爲(sigma) (sigma/半)代數上的測度。數學分析,汎函分析之類的書,測度都是定義為在sigma代數上的,sigma可加性函數。半代數上可定義測度,然後推廣到代數/sigma代數上,但是由於分析學主要考慮的都是sigma代數上的問題,所以直接定義在sigma代數上是爲了方便考慮。

集函数

上下连续

定义: C ⊆ S ( Ω ) \mathcal{C} \subseteq S(\Omega) CS(Ω), μ : C → R + ∪ { + ∞ } \mu :\mathcal{C} \rightarrow \mathbb{R}_+ \cup \{+\infty \} μ:CR+{ +}
(1) E ∈ C , μ E \in \mathcal{C}, \mu EC,μ是下连续的,如果
∀ ( E n ) n ≥ 1 , E n ∈ C , E n ↑ E ⇒ μ ( E n ) ↑ μ ( E ) \forall (E_n)_{n\ge 1}, E_n\in \mathcal{C} , E_n \uparrow E \Rightarrow \mu(E_n) \uparrow \mu(E) (En)n1,EnC,EnEμ(En)μ(E)
(2) E ∈ C , μ E \in \mathcal{C}, \mu EC,μ是上连续的,如果
∀ ( E n ) n ≥ 1 , E n ∈ C , ∃ η 0 , μ ( E η 0 ) < ∞ , E n ↓ E ⇒ μ ( E n ) ↓ μ ( E ) \forall (E_n)_{n\ge 1}, E_n\in \mathcal{C} , \exist \eta_0, \mu(E_{\eta_0}) < \infty, E_n \downarrow E \Rightarrow \mu(E_n) \downarrow \mu(E) (En)n1,EnC,η0,μ(Eη0)<,EnEμ(En)μ(E)

其中 E n ↑ E E_n \uparrow E EnE含義是 E n ⊆ E n + 1 , ∪ n ≥ 1 E n = E E_n \subseteq E_{n+1} ,\cup_{n\ge 1} E_n = E EnEn+1,n1En=E
E n ↓ E E_n \downarrow E EnE含義是 E n ⊇ E n + 1 , ∩ n ≥ 1 E n = E E_n \supseteq E_{n+1} ,\cap_{n\ge 1} E_n = E EnEn+1,n1En=E

如果 μ \mu μ上連續且下連續,則稱 μ \mu μ連續

引理

定義在代數 A ⊆ S ( Ω ) \mathcal{A} \subseteq S(\Omega) AS(Ω)上的可加性函數 μ : A → R + ∪ { + ∞ } \mu: \mathcal{A} \rightarrow R_+ \cup \{+\infty\} μ:AR+{ +}
(1) 如果 μ \mu μ是可數可加的,則 μ \mu μ在E上連續 ∀ E ∈ A \forall E \in \mathcal{A} EA
(2) 如果 μ \mu μ是下連續的,則 μ \mu μ可數可加
(3)如果 μ \mu μ關於 ∅ \varnothing 上連續,且 μ \mu μ有限,則 μ \mu μ可數可加
证明也比较简单,就是繁琐些

证明:
(1)设 μ \mu μ是可数可加的,任取 E n ∈ A , E n ↑ E ∈ A E_n \in \mathcal{A} , E_n \uparrow E \in \mathcal{A} EnA,EnEA,令 E 0 = ∅ , F i = E i \ E i − 1 , i = 1 , 2 , 3... E_0 = \varnothing, F_i = E_i \backslash E_{i-1} ,i=1,2,3... E0=,Fi=Ei\Ei1,i=1,2,3...

E n = ∑ k ≥ 1 n F k E_n = \sum_{k\ge 1}^n F_k En=k1nFk
E = ∑ k ≥ 1 F k E = \sum_{k\ge 1} F_k E=k1Fk
所以
μ ( E ) = ∑ k ≥ 1 μ ( F k ) = lim ⁡ n → ∞ ∑ k ≥ 1 μ ( F k ) = lim ⁡ n → ∞ μ ( ∑ k = 1 n F k ) = lim ⁡ n → ∞ μ ( E n ) \mu(E) = \sum_{k\ge 1} \mu( F_k)=\lim_{n\rightarrow \infty} \sum_{k\ge 1} \mu(F_k) = \lim_{n\rightarrow \infty} \mu(\sum_{k=1}^n F_k) =\lim_{n\rightarrow \infty} \mu(E_n) μ(E)=k1μ(Fk)=nlimk1μ(Fk)=nlimμ(k=1nFk)=nlimμ(En)
即说明 μ \mu μ是下连续的。

任取 E n ∈ A , E n ↓ E ∈ A , μ ( E n 0 ) < ∞ E_n \in \mathcal{A} , E_n \downarrow E \in \mathcal{A},\mu(E_{n_{0}}) < \infty EnA,EnEA,μ(En0)<
G 1 = E n 0 \ E n 0 + 1 , G 2 = E n 0 \ E n 0 + 2 , G k = E n 0 \ E n 0 + k , k = 1 , 2 , . . . G_1 = E_{n_{0}} \backslash E_{n_{0} + 1}, G_2 = E_{n_{0} } \backslash E_{n_{0} + 2}, G_k = E_{n_{0} } \backslash E_{n_{0} + k}, k = 1,2,... G1=En0\En0+1,G2=En0\En0+2,Gk=En0\En0+k,k=1,2,...

G i ∈ A , G k ↑ E n 0 \ E G_i \in \mathcal{A}, G_k \uparrow E_{n_{0} }\backslash E GiA,GkEn0\E
利用上面的结论可知
μ ( E n 0 \ E ) = lim ⁡ k μ ( G k ) = lim ⁡ k μ ( E n 0 \ E n 0 + k ) \mu(E_{n_{0}} \backslash E) =\lim_k \mu (G_k)= \lim_k \mu(E_{n_{0}} \backslash E_{n_{0} + k}) μ(En0\E)=klimμ(Gk)=klimμ(En0\En0+k)
而由于
μ ( E n 0 \ E ) = μ ( E n 0 ) − μ ( E ) \mu(E_{n_{0}} \backslash E) = \mu(E_{n_{0}} ) - \mu(E) μ(En0\E)=μ(En0)μ(E)
μ ( E n 0 \ E n 0 + k ) = μ ( E n 0 ) − μ ( E n 0 + k ) \mu(E_{n_{0}} \backslash E_{n_{0} + k}) = \mu(E_{n_{0}} ) - \mu(E_{n_{0} + k}) μ(En0\En0+k)=μ(En0)μ(En0+k)
可得
μ ( E ) = lim ⁡ k μ ( E n 0 + k ) = lim ⁡ k μ ( E k ) \mu(E) = \lim_k \mu(E_{ {n_0}+k}) = \lim_k \mu (E_{k}) μ(E)=klimμ(En0+k)=klimμ(Ek)
μ \mu μ上连续

(2)设 μ \mu μ下连续,任取 E = ∑ k ≥ 1 E k , E k , E ∈ A E = \sum_{k\ge 1} E_k ,E_k, E \in \mathcal{A} E=k1Ek,Ek,EA
显然 ∑ k ≥ 1 n E k ↑ E \sum_{k\ge 1}^n E_k \uparrow E k1nEkE
所以根据可加性
∑ k ≥ 1 n μ ( E k ) = μ ( ∑ k ≥ 1 n E k ) \sum_{k\ge 1}^n \mu( E_k) = \mu(\sum_{k\ge 1}^n E_k) k1nμ(Ek)=μ(k1nEk)
取极限,有 ∑ k ≥ 1 μ ( E k ) = lim ⁡ k ( ∑ k ≥ 1 n E k ) = μ ( E ) \sum_{k\ge 1} \mu( E_k) = \lim_k ( \sum_{k\ge 1}^n E_k) = \mu(E) k1μ(Ek)=klim(k1nEk)=μ(E)

(3) 设 μ \mu μ关于 ∅ \varnothing 上连续,且 μ ( Ω ) < ∞ \mu(\Omega) <\infty μ(Ω)<,任取 E = ∑ k ≥ 1 E k , E k , E ∈ A E = \sum_{k\ge 1} E_k ,E_k, E \in \mathcal{A} E=k1Ek,Ek,EA
F n = ∑ k ≥ m E k = E \ ∑ j = 1 n − 1 E j ∈ A F_n = \sum_{k \ge m} E_k = E \backslash \sum_{j=1}^{n-1} E_j \in \mathcal{A} Fn=kmEk=E\j=1n1EjA

F n ↓ ∅ F_n \downarrow \varnothing Fn
所以,由上连续性以及 μ \mu μ的有限性知 μ ( F n ) → 0 \mu(F_n) \rightarrow 0 μ(Fn)0
再由可加性
μ ( E ) = ∑ k = 1 n μ ( E k ) + μ ( F n + 1 ) \mu(E) = \sum_{k=1}^n \mu(E_k) + \mu(F_{n+1}) μ(E)=k=1nμ(Ek)+μ(Fn+1)
关于任意的n都成立,可知
μ ( E ) = ∑ k ≥ 1 μ ( E k ) \mu(E) =\sum_{k\ge 1} \mu(E_k) μ(E)=k1μ(Ek)

证毕

Caratheodory 理论

半代数测度扩张

定理:设 S ⊆ S ( Ω ) \mathcal{S} \subseteq S(\Omega) SS(Ω)为半代数,函数 μ : S → R + ∪ { + ∞ } \mu: \mathcal{S} \rightarrow \mathbb{R}_+ \cup \{+\infty\} μ:SR+{ +}是定义在其上的(可数)可加性函数,则存在(可数)可加性函数
ν : A ( S ) → R + ∪ { + ∞ } \nu : \mathcal{A}(\mathcal{S}) \rightarrow \mathbb{R}_+ \cup \{+\infty\} ν:A(S)R+{ +}
使得
μ ( A ) = ν ( A ) , ∀ A ∈ S ( 在 S 上 , μ = ν ) \mu(A) = \nu(A), \forall A \in \mathcal{S} (在\mathcal{S}上,\mu = \nu) μ(A)=ν(A),AS(Sμ=ν)
ν \nu ν唯一,即
∀ ν 1 , ν 2 : A ( S ) → R + ∪ { + ∞ } \forall \nu_1, \nu_2 : \mathcal{A}(\mathcal{S}) \rightarrow \mathbb{R}_+ \cup \{+\infty\} ν1,ν2:A(S)R+{ +}
∀ A ∈ S , ν 1 ( A ) = ν 2 ( A ) ⇒ ∀ E ∈ A ( S ) , ν 1 ( E ) = ν 2 ( E ) \forall A \in \mathcal{S}, \nu_1(A) = \nu_2(A) \Rightarrow \forall E \in \mathcal{A}(\mathcal{S}), \nu_1(E) = \nu_2(E) AS,ν1(A)=ν2(A)EA(S),ν1(E)=ν2(E)
ν \nu ν μ \mu μ半代数测度扩张

证明:构造,任取 A ∈ A ( S ) A\in \mathcal{A}(\mathcal{S}) AA(S) 则有半代数生成代数的引理知 A = ∑ j = 1 n E j , E j ∈ S A = \sum_{j = 1}^n E_j, E_j \in \mathcal{S} A=j=1nEj,EjS
定义 ν ( A ) = ∑ j = 1 n μ ( E j ) \nu(A) = \sum_{j=1}^n \mu(E_j) ν(A)=j=1nμ(Ej),则 ν \nu ν为所求
我们必须证明 ν \nu ν定义合理, ν \nu ν满足可加性, ν \nu ν唯一

1)合理性,即对于一个A的不同分解, ν \nu ν的值都一样。
A = ∑ j = 1 n E j = ∑ j = 1 m F j , A = \sum_{j = 1}^n E_j = \sum_{j = 1}^m F_j, A=j=1nEj=j=1mFj,
E i = ∑ j = 1 m E i ∩ F j , F j = ∑ i = 1 n E i ∩ F j E_i = \sum_{j = 1}^m E_i \cap F_j,F_j= \sum_{i = 1}^n E_i \cap F_j Ei=j=1mEiFj,Fj=i=1nEiFj
∑ i = 1 n μ ( E i ) = ∑ i = 1 n ∑ j = 1 m μ ( E i ∩ F j ) = ∑ j = 1 m μ ( F j ) \sum_{i = 1}^n \mu(E_i) = \sum_{i = 1}^n \sum_{j = 1}^m \mu(E_i \cap F_j) =\sum_{j = 1}^m \mu(F_j ) i=1nμ(Ei)=i=1nj=1mμ(EiFj)=j=1mμ(Fj)
ν \nu ν定义合理
(2)(可加性)对于任意 A , B ∈ A ( S ) , A ∩ B = ∅ A,B \in \mathcal{A}(\mathcal{S}), A\cap B = \varnothing A,BA(S),AB=,设 A = ∑ i = 1 n E i , B = ∑ j = 1 m F j A = \sum_{i=1}^n E_i, B = \sum_{j=1}^m F_j A=i=1nEi,B=j=1mFj,则
ν ( A ∪ B ) = ν ( ∑ i = 1 n E i + ∑ j = 1 m F j ) = ∑ i = 1 n μ ( E i ) + ∑ j = 1 m μ ( F j ) = ν ( A ) + ν ( B ) \nu(A\cup B) = \nu( \sum_{i=1}^n E_i + \sum_{j=1}^m F_j) = \sum_{i=1}^n \mu(E_i) +\sum_{j=1}^m \mu(F_j)=\nu(A) + \nu(B) ν(AB)=ν(i=1nEi+j=1mFj)=i=1nμ(Ei)+j=1mμ(Fj)=ν(A)+ν(B)
(3)(唯一性)设两个可加性函数
∀ ν 1 , ν 2 : A ( S ) → R + ∪ { + ∞ } \forall \nu_1, \nu_2 : \mathcal{A}(\mathcal{S}) \rightarrow \mathbb{R}_+ \cup \{+\infty\} ν1,ν2:A(S)R+{ +}
∀ A ∈ S , ν 1 ( A ) = ν 2 ( A ) \forall A \in \mathcal{S}, \nu_1(A) = \nu_2(A) AS,ν1(A)=ν2(A)

任取 B ∈ A ( S ) , B = ∑ j = 1 n E j , E j ∈ S B\in \mathcal{A}(\mathcal{S}),B=\sum_{j=1}^n E_j, E_j \in \mathcal{S} BA(S),B=j=1nEj,EjS
ν 1 ( B ) = ∑ j = 1 n ν 1 ( E j ) = ∑ j = 1 n ν 2 ( E j ) = ν 2 ( B ) \nu_1(B) = \sum_{j=1}^n \nu_1 (E_j) =\sum_{j=1}^n \nu_2 (E_j) = \nu_2(B) ν1(B)=j=1nν1(Ej)=j=1nν2(Ej)=ν2(B)
证毕

注:如果 μ \mu μ是可数可加的,则 ν \nu ν也是可数可加的。

证明:任取 A = ∑ j ≥ 1 A j , A , A j ∈ A ( S ) A = \sum_{j \ge 1} A_j ,A,A_j \in \mathcal{A}(\mathcal{S}) A=j1Aj,A,AjA(S),要证明 ν ( A ) = ∑ j ≥ 1 ν ( A j ) \nu(A) =\sum_{j \ge 1} \nu(A_j) ν(A)=j1ν(Aj)
首先设 A = ∑ j = 1 n E j , A k = ∑ i = 1 m k E k , i , E j , E k , i ∈ S A = \sum_{j=1}^n E_j, A_k = \sum_{i=1}^{m_k} E_{k,i}, E_j,E_{k,i} \in \mathcal{S} A=j=1nEj,Ak=i=1mkEk,i,Ej,Ek,iS

ν ( A ) = ∑ j = 1 n μ ( E j ) \nu(A) = \sum_{j=1}^n \mu(E_j) ν(A)=j=1nμ(Ej)
ν ( A k ) = ∑ i = 1 m k μ ( E k , i ) \nu(A_k) = \sum_{i=1}^{m_k} \mu(E_{k,i}) ν(Ak)=i=1mkμ(Ek,i)
E j = ∑ k ≥ 1 E j ∩ A k = ∑ k ≥ 1 ∑ i = 1 m k E j ∩ E k , i E_j =\sum_{k\ge 1} E_j \cap A_k =\sum_{k\ge 1} \sum_{i=1}^{m_k} E_j \cap E_{k,i} Ej=k1EjAk=k1i=1mkEjEk,i

ν ( A ) = ∑ j = 1 n μ ( E j ) = ∑ j = 1 n ∑ k ≥ 1 ∑ i = 1 m k μ ( E j ∩ E k , i ) = ∑ k ≥ 1 ∑ i = 1 m k μ ( E k , i ) = ∑ k ≥ 1 ν ( A k ) \begin{aligned} \nu(A) &= \sum_{j=1}^n \mu(E_j) \\ &= \sum_{j=1}^n \sum_{k\ge 1} \sum_{i=1}^{m_k} \mu(E_j \cap E_{k,i}) \\ &= \sum_{k\ge 1} \sum_{i=1}^{m_k} \mu(E_{k,i}) \\ &= \sum_{k\ge 1} \nu(A_k)\end{aligned} ν(A)=j=1nμ(Ej)=j=1nk1i=1mkμ(EjEk,i)=k1i=1mkμ(Ek,i)=k1ν(Ak)

证毕

外测度

定义: C ⊆ S ( Ω ) , ∅ ∈ S , μ : C → R + ∪ { + ∞ } \mathcal{C} \subseteq S(\Omega), \varnothing \in \mathcal{S} ,\mu: C \rightarrow R_+\cup \{+\infty\} CS(Ω),S,μ:CR+{ +}满足
(1) μ ( ∅ ) = 0 \mu(\varnothing) = 0 μ()=0
(2) E ⊆ F , E , F ∈ C ⇒ μ ( E ) ≤ μ ( F ) E \subseteq F, E,F \in \mathcal{C} \Rightarrow \mu(E) \le \mu(F) EF,E,FCμ(E)μ(F)
(3) E , E i ∈ C , E ⊆ ∪ i E i ⇒ μ ( E ) ≤ ∑ i μ ( E i ) E,E_i \in \mathcal{C}, E \subseteq \cup_i E_i \Rightarrow \mu(E) \le \sum_i \mu(E_i) E,EiC,EiEiμ(E)iμ(Ei)
则称 μ \mu μ C \mathcal{C} C上的外测度

前面已經證明了,半代數上的(sigma)測度能唯一地擴張到生成代數上,而接下來的Caratheodory 測度擴張定理指出,代數上的可數可加性測度能夠唯一的擴張到生成 σ \sigma σ代數上。

定理 ν : A → R + ∪ { + ∞ } \nu: \mathcal{A} \rightarrow \mathbb{R}_+ \cup \{+\infty\} ν:AR+{ +}是代數上的 σ \sigma σ可數可加性函數,則存在外側度 π ∗ : S ( Ω ) → R + ∪ { + ∞ } \pi^* : \mathcal{S}(\Omega)\rightarrow \mathbb{R}_+ \cup \{+\infty\} π:S(Ω)R+{ +}和一個包含 A \mathcal{A} A σ \sigma σ代數M,使得 π ∗ ∣ M \left. \pi^* \right|_M πM σ \sigma σ可數可加的,而且 π ∗ ∣ A = ν \left. \pi^* \right|_\mathcal{A} = \nu πA=ν (竪綫是定義域限制)

如果測度是 σ \sigma σ有限(全集为可数个有限测度的集合的并)的,則擴張是唯一的

證明:
step1: 構造 π ∗ \pi^* π。對於 A ⊆ Ω A\subseteq \Omega AΩ,令

π ∗ ( A ) = inf ⁡ E i ∑ i ≥ 1 ν ( E i ) , E i ∈ A , A ⊆ ∪ E i \pi^*(A)= \inf_{E_i} \sum_{i\ge 1} \nu(E_i),E_i \in \mathcal{A}, A \subseteq \cup E_i π(A)=Eiinfi1ν(Ei),EiA,AEi

π ∗ \pi^* π為外測度。即满足下面三条
(1) π ∗ ( ∅ ) = 0 \pi^*(\varnothing) = 0 π()=0 因为 ν ( ∅ ) = 0 \nu(\varnothing) = 0 ν()=0
(2) E ⊆ F , E , F ∈ C ⇒ π ∗ ( E ) ≤ π ∗ ( F ) E \subseteq F, E,F \in \mathcal{C} \Rightarrow \pi^*(E) \le \pi^*(F) EF,E,FCπ(E)π(F)
(3) E , E i ∈ C , E ⊆ ∪ i E i ⇒ π ∗ ( E ) ≤ ∑ i π ∗ ( E i ) E,E_i \in \mathcal{C}, E \subseteq \cup_i E_i \Rightarrow \pi^*(E) \le \sum_i \pi^*(E_i) E,EiC,EiEiπ(E)iπ(Ei)
(2)(3)也是显然的,根据inf和包含关系即可得到

step2: 构造包含代数 A \mathcal{A} A σ \sigma σ代数 M \mathcal{M} M
M = { A ∣ ∀ E ⊆ Ω , π ∗ ( E ) = π ∗ ( E ∩ A ) + π ∗ ( E ∩ A ∁ ) } \mathcal{M} = \{ A | \forall E \subseteq \Omega ,\pi^*(E) = \pi^*(E\cap A) + \pi^*(E\cap A^\complement ) \} M={ AEΩ,π(E)=π(EA)+π(EA)}

这个 π ∗ ( E ) ≤ π ∗ ( E ∩ A ) + π ∗ ( E ∩ A ∁ ) \pi^*(E) \le \pi^*(E\cap A) + \pi^*(E\cap A^\complement ) π(E)π(EA)+π(EA)是显然的,所以只需要保证 π ∗ ( E ) ≥ π ∗ ( E ∩ A ) + π ∗ ( E ∩ A ∁ ) \pi^*(E) \ge \pi^*(E\cap A) + \pi^*(E\cap A^\complement ) π(E)π(EA)+π(EA)

现证
(a) A ⊆ M \mathcal{A}\subseteq \mathcal{M} AM
(b) M \mathcal{M} M σ \sigma σ代数

(a) 即证明 ∀ A ∈ A , E ⊆ Ω , π ∗ ( E ) ≥ π ∗ ( E ∩ A ) + π ∗ ( E ∩ A ∁ ) \forall A \in \mathcal{A}, E\subseteq \Omega ,\pi^*(E) \ge \pi^*(E \cap A) + \pi^*(E\cap A^\complement) AA,EΩ,π(E)π(EA)+π(EA)
不妨设 π ∗ ( E ) < ∞ \pi^*(E) < \infty π(E)<,则由 ν \nu ν的上连续性(可数可加性)
∀ ε > 0 , ∃ { E i } , E ∈ A , E ⊆ ∪ i ≥ 1 E i \forall \varepsilon > 0, \exists \{E_i\} , E \in \mathcal{A}, E \subseteq \cup_{i \ge 1} E_i ε>0,{ Ei},EA,Ei1Ei
π ∗ ( E ) ≤ ∑ i ≥ 1 ν ( E i ) ≤ π ∗ ( E ) + ε \pi^*(E) \le \sum_{i \ge 1} \nu(E_i) \le \pi^*(E) + \varepsilon π(E)i1

  • 24
    点赞
  • 68
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
测度论》是一本由保罗·哈尔莫斯(Paul Halmos)撰写的数学著作,是研究测度论领域的经典教材之一。这本书的适合读者包括数学专业的研究生和高年级本科生,以及对测度论感兴趣的数学爱好者。 《测度论》一书系统地介绍了测度论的基本概念、性质和应用。首先,书中介绍了测度的定义和性质,包括测度的可加性、有界性和连续性等。然后,书中讨论了测度空间中的可测集合,以及可测函数的基本性质。此外,书中还讲述了测度的构造方法,如外测度、Lebesgue测度等,并研究了这些构造方法之间的关系。最后,书中应用测度论的知识研究了积分论的基本概念和性质。 《测度论》的优点之一是其严谨性和清晰的逻辑结构。哈尔莫斯以自己独特的方式阐述了这一复杂且抽象的数学理论,通过引入充分的定义、定理和例子,帮助读者建立起对测度论的理解。此外,书中引入了许多具体的测度空间和测度函数的例子,使读者能够更好地理解概念和性质的含义。 这本书的一些缺点是其内容较为晦涩和抽象,需要读者具备一定的数学基础和抽象思维能力才能完全理解。此外,书中的习题相对较少,不同层次的习题和解答可以帮助读者更好地巩固和应用所学知识。 总的来说,《测度论》是一本经典且具有权威性的测度论教材,适合对测度论感兴趣的学生和学者阅读。它的深入分析和全面的内容,使它成为测度论领域不可或缺的参考书籍,同时也激发了读者进一步研究和探索这一数学分支的兴趣。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值