傅里叶变换及其应用笔记(part 1)

斯坦福EE261

录)

预备内容:

由Fourier级数过渡到Fourier分析(源于周期性,空间周期性和时间周期性)
傅里叶变换作为Fourier级数的极限情况,用来分析非周期现象,有些概念两者通用,有些不同
分析:分解一个函数(信号)为一些简单的部分
合成:吧基本部分重组成信号本身
分析和合成是由线性运算完成的,就是积分和序列
Fourier分析是线性系统的一部分
和群论有关的研究对称性

周期性:三角函数表示复杂函数

并非所有现象都有周期性,即使为周期现象,最终也会消失,然而cos,sin是无限的,但在一段时间内,即使没有周期性也可以用周期延拓使其成为周期现象

用来表示复杂信号(函数),使用cos和sin(通过改变相位和频率相加)周期为1
∑ k = 1 N A k sin ⁡ ( s π k t + φ k ) \sum_{k=1}^N A_k \sin(s\pi k t + \varphi_k) k=1NAksin(sπkt+φk)
可以看成音频的叠加(音乐音符的组合)可以产生声音
上式的另一个形式为
∑ k = 1 N a k sin ⁡ 2 π k t + b k cos ⁡ 2 π k t \sum_{k=1}^N a_k \sin 2\pi kt +b_k \cos 2\pi kt k=1Naksin2πkt+bkcos2πkt
再加一个常数
a 0 2 + ∑ k = 1 N a k sin ⁡ 2 π k t + b k cos ⁡ 2 π k t \frac{a_0}{2}+\sum_{k=1}^N a_k \sin 2\pi kt +b_k \cos 2\pi kt 2a0+k=1Naksin2πkt+bkcos2πkt
e 2 π i k t = cos ⁡ 2 π k t + i sin ⁡ 2 π k t e^{2\pi i kt} = \cos 2\pi kt + i \sin 2\pi kt e2πikt=cos2πkt+isin2πkt
cos ⁡ 2 π k t = e 2 π i k t + e − 2 π i k t 2 sin ⁡ 2 π k t = e 2 π i k t − e − 2 π i k t 2 i \cos 2\pi kt = \frac{e^{2\pi i kt} + e^{-2\pi i kt}}{2}\\ \sin 2\pi kt = \frac{e^{2\pi i kt} - e^{-2\pi i kt}}{2i} cos2πkt=2e2πikt+e2πiktsin2πkt=2ie2πikte2πikt
得,和式可表示为( c k c_k ck为复数,满足对称性 c − k = c k ‾ c_{-k} = \overline{c_k} ck=ck,因为结果为实数)
∑ k = − N N c k e 2 π i k t \sum_{k = -N}^Nc_k e^{2\pi i kt} k=NNcke2πikt
对于一个周期性为1的函数 f ( t ) f(t) f(t),它能表示成
f ( t ) = ∑ k = − n n c k e 2 π i k t f(t) = \sum_{k = -n}^nc_k e^{2\pi i kt} f(t)=k=nncke2πikt
先不管为什么,我们假设等式成立,那么怎么求 c k c_k ck,分离系数

c m e 2 π i m t = f ( t ) − ∑ k   ≠ m e 2 π i k t c_m e^{2\pi i m t} = f(t) - \sum_{k \,\ne m} e^{2\pi i kt} cme2πimt=f(t)k̸=me2πikt
两边乘 e − 2 π i m t e^{-2\pi i m t} e2πimt,的

c m = f ( t ) e − 2 π i m t − ∑ k   ≠ m e 2 π i k t e − 2 π i m t c_m = f(t)e^{-2\pi i m t} - \sum_{k \,\ne m} e^{2\pi i kt} e^{-2\pi i m t} cm=f(t)e2πimtk̸=me2πikte2πimt
做积分(其实就是内积)
c m = ∫ 0 1 c m d t = ∫ 0 1 f ( t ) e − 2 π i m t d t + 0 c_m = \int_0^1 c_m dt =\int_0^1 f(t)e^{-2\pi i m t} dt + 0 cm=01cmdt=01f(t)e2πimtdt+0

将一般周期函数表为简单周期函数和

考虑前面剩下的问题:为什么能这么表示,什么时候能表示
f ^ ( k ) = ∫ 0 1 f ( t ) e − 2 π i k t d t \hat{f}(k)=\int_0^1 f(t)e^{-2\pi i k t} dt f^(k)=01f(t)e2πiktdt表示 f ( t ) f(t) f(t)的第 k k k个系数
在这里插入图片描述
上面阶梯函数是不能表示成有限和的,对于
三角
就算上面这样的连续函数也是不行的,因为无限可微的函数的有限组合也是无限可微的,所以表示成有限和的必要条件是无限可微,对于不是很光滑的地方,我们就需要更高频的成分去弥补它
所以为了表示更一般的周期现象,必须考虑无限和
∑ − ∞ ∞ f ( t ) e 2 π i k t \sum_{-\infty}^{\infty}f(t) e^{2\pi i kt} f(t)e2πikt
还要确定它是否收敛,需要一些消去技巧(见傅里叶分析导论)
连续的情况它收敛于 f ( t ) f(t) f(t),为逐点收敛
如果 f ( t ) f(t) f(t)可微,那么级数一致收敛到 f ( t ) f(t) f(t)
对于不连续的情况,如果 t 0 t_0 t0为跳跃不连续点,那么它收敛于 1 2 ( f ( t 0 + ) + f ( t 0 − ) ) \frac{1}{2}(f(t_0^+)+f(t_0^-)) 21(f(t0+)+f(t0))
当满足一些情况的时候,级数均方收敛
只要有一点不光滑,就会产生无穷的傅里叶级数
补充,内积定义:见分析学,可以定义内积为如下
< f , g > = ∫ 0 1 f ( t ) g ( t ) ‾ d t \left<f,g\right>=\int_0^1 f(t) \overline{g(t)}dt f,g=01f(t)g(t)dt
范数为 < f , f > = ∥ f ∥ 2 = ∫ 0 1 f ( t ) f ( t ) ‾ d t = ∫ 0 1 ∣ f ( t ) ∣ 2 d t \left<f,f \right>=\|f\|^2 =\int_0^1 f(t) \overline{f(t)}dt =\int_0^1 |f(t)|^2dt f,f=f2=01f(t)f(t)dt=01f(t)2dt
可以证明 e 2 π i n t , n ∈ Z e^{2\pi i nt},n \in \mathbb{Z} e2πint,nZ L 2 ( 0 , 1 ) L^2(0,1) L2(0,1)的正交基,并且是完备的
傅里叶级数可以看成分到正交基上分量的和

瑞利等式(Rayleigh equality):
∫ 0 1 ∣ f ∣ 2 d t = ∑ − ∞ ∞ ∣ f ^ ( k ) ∣ 2 \int_0^1 |f|^2 dt = \sum_{-\infty}^\infty |\hat{f}(k)|^2 01f2dt=f^(k)2
可以看成能量部分和为总和

应用(热方程)

heat flow(热流)物理导致傅里叶分析的快速发展
有一个空间区域,有初始温度分布 f ( x ) f(x) f(x),温度如何随时间和位置变化
关注一个热环(周长为1), u ( x , t ) u(x,t) u(x,t)为我们所要找的
在这里插入图片描述
温度为空间的周期函数, u ( x + 1 , t ) = u ( x , t ) u(x+1,t) = u(x,t) u(x+1,t)=u(x,t),对 x x x进行展开
u ( x , t ) = ∑ − ∞ ∞ c k e 2 π i k x = ∑ − ∞ ∞ c k ( t ) e 2 π i k x u(x,t) = \sum_{-\infty}^\infty c_k e^{2\pi i kx} = \sum_{-\infty}^\infty c_k(t) e^{2\pi i kx} u(x,t)=cke2πikx=ck(t)e2πikx

Heat equation (热方程,下标表示偏导,这是偏微分方程):
温度随时间变化跟周围温度差大小成正比,原理见另一篇博客
多变量微积分中散度定理关于扩散方程的推导
一维: u t = a u x x u_t = au_{xx} ut=auxx( a a a和物理特性有关),为了方便这里令 a = 1 2 a=\frac{1}{2} a=21
u t = 1 2 u x x u_t = \frac{1}{2}u_{xx} ut=21uxx
u t = ∑ − ∞ ∞ c k ′ ( t ) e 2 π i k x u_t=\sum_{-\infty}^\infty c_k'(t) e^{2\pi i kx} ut=ck(t)e2πikx
u x x = ∑ − ∞ ∞ c k ( t ) ( 2 π i k ) 2 e 2 π i k x u_{xx}=\sum_{-\infty}^\infty c_k(t) (2\pi i k)^2e^{2\pi i kx} uxx=ck(t)(2πik)2e2πikx
对应项相等,得到 c k ′ ( t ) = − 1 2 c k ( t ) ( 4 π 2 k 2 ) c_k'(t)=-\frac{1}{2}c_k(t)(4\pi^2k^2) ck(t)=21ck(t)(4π2k2)

c k ′ ( t ) = − 2 π 2 k 2 c k ( t ) c_k'(t) = -2\pi^2 k^2 c_k(t) ck(t)=2π2k2ck(t)
这是一个ODE解为
c k ( t ) = c k ( 0 ) e − 2 π 2 k 2 t c_k(t) = c_k(0)e^{-2\pi^2k^2t} ck(t)=ck(0)e2π2k2t

u ( x , t ) = ∑ − ∞ ∞ c k ( t ) e 2 π i k x u(x,t) = \sum_{-\infty}^\infty c_k(t) e^{2\pi i kx} u(x,t)=ck(t)e2πikx
t = 0 t=0 t=0,
u ( x , 0 ) = ∑ − ∞ ∞ c k ( 0 ) e 2 π i k x u(x,0) = \sum_{-\infty}^\infty c_k(0) e^{2\pi i kx} u(x,0)=ck(0)e2πikx
也就是
f ( x ) = u ( x , 0 ) = ∑ k = − ∞ ∞ c k ( 0 ) e 2 π i k x f(x) = u(x,0) = \sum_{k=-\infty}^\infty c_k(0) e^{2\pi i kx} f(x)=u(x,0)=k=ck(0)e2πikx
c k ( 0 ) = ∫ f ( x ) e − 2 π i k x d x = f ^ ( k ) c_k(0)=\int f(x) e^{-2\pi i k x}dx = \hat{f}(k) ck(0)=f(x)e2πikxdx=f^(k)
代入上面的,得到
u ( x , t ) = ∑ k = − ∞ ∞ f ^ ( k ) e − 2 π 2 k 2 t e 2 π i k x u(x,t) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{-2\pi^2 k^2 t }e^{2\pi ikx} u(x,t)=k=f^(k)e2π2k2te2πikx

以另一种方式写
f ^ ( k ) = ∫ 0 1 e − 2 π i k y f ( y ) d y \hat{f}(k) = \int_0^1 e^{-2\pi i ky}f(y)dy f^(k)=01e2πikyf(y)dy
u ( x , t ) = ∑ k = − ∞ ∞ c k ( t ) e 2 π i k x = ∑ k = − ∞ ∞ c k ( 0 ) e − 2 π 2 k 2 t e 2 π i k x = ∑ k = − ∞ ∞ ∫ 0 1 f ( y ) e − 2 π i k y d y   e − 2 π 2 k 2 t e 2 π i k x = ∫ 0 1 ( ∑ k = − ∞ ∞ e − 2 π i k y e − 2 π 2 k 2 t e 2 π i k x ) f ( y ) d y = ∫ 0 1 ( e 2 π i k ( x − y ) e − 2 π 2 k 2 t ) f ( y ) d y \begin{aligned}u(x,t) &= \sum_{k=-\infty}^\infty c_k(t)e^{2\pi ikx}\\ &= \sum_{k=-\infty}^\infty c_k(0) e^{-2\pi^2 k^2t} e^{2\pi ikx} \\ &= \sum_{k=-\infty}^\infty \int_0^1 f(y) e^{-2\pi i k y }dy \,e^{-2\pi^2 k^2t} e^{2\pi ikx}\\ &=\int_0^1\left(\sum_{k=-\infty}^\infty e^{-2\pi i k y }e^{-2\pi^2 k^2t} e^{2\pi ikx} \right) f(y) dy\\ &=\int_0^1\left(e^{2\pi i k(x - y)}e^{-2\pi^2 k ^2 t} \right) f(y) dy\end{aligned} u(x,t)=k=ck(t)e2πikx=k=ck(0)e2π2k2te2πikx=k=01f(y)e2πikydye2π2k2te2πikx=01(k=e2πikye2π2k2te2πikx)f(y)dy=01(e2πik(xy)e2π2k2t)f(y)dy

g ( x , t ) = e 2 π i k x e − 2 π 2 k 2 t g(x,t)=e^{2\pi i kx}e^{-2\pi^2 k ^2 t} g(x,t)=e2πikxe2π2k2t

u ( x , t ) = ∫ 0 1 g ( x − y , t ) f ( y ) d y u(x,t) = \int_0^1 g(x - y,t) f(y) dy u(x,t)=01g(xy,t)f(y)dy
这表达了 u ( x m t ) u(xmt) u(xmt) f ( x ) f(x) f(x)与热核函数 g ( x , t ) g(x,t) g(x,t)的卷积
g的不同叫法:热核函数也称为格林函数
(泊松核和狄利克雷问题也会类似)

傅里叶变换(周期现象到非周期现象)

将非周期函数看做周期无限函数。傅里叶 变换是一种一般(也就是另一种极限的情况,即周期无限)情况,即傅里叶级数的极限形式
对于周期T的函数(再让 T → ∞ T\rightarrow \infty T
傅里叶基为 e 2 π i k ( t / T ) e^{2\pi i k (t/T)} e2πik(t/T),傅里叶级数为
f ( t ) = ∑ c k e 2 π i ( k / T ) t c k = 1 T ∫ 0 1 e − 2 π i ( k / T ) t f ( t ) d t f(t) = \sum c_k e^{2\pi i (k / T)t}\\ c_k = \frac{1}{T} \int_0^1 e^{-2\pi i (k/T)t}f(t) dt f(t)=cke2πi(k/T)tck=T101e2πi(k/T)tf(t)dt
(缩放即可,然而为什么基完备这是另一个问题)
可写成
c k = 1 T ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i (k/T)t}f(t) dt ck=T12T2Te2πi(k/T)tf(t)dt

频谱Picture of frequency( spectrum)
在这里插入图片描述
它是对称的因为 c c c对称,周期为 T T T,则间隔为 1 T \frac{1}{T} T1
T → ∞ T\rightarrow \infty T的时候,频谱变得连续。
不能直接让 T → ∞ T\rightarrow \infty T得到傅里叶变换,因为当 T → ∞ T\rightarrow \infty T时,由
c k = 1 T ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i (k/T)t}f(t) dt ck=T12T2Te2πi(k/T)tf(t)dt
计算的 c k c_k ck趋于0
比如 f ( t ) f(t) f(t)是一个只在[a,b]上不为0的函数,将其周期延 − T 2 -\frac{T}{2} 2T T 2 \frac{T}{2} 2T包含[a,b]即可)
我们计算 c k = 1 T ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t = 1 T ∫ a b e − 2 π i ( k / T ) t f ( t ) d t \begin{aligned}c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i (k/T)t}f(t) dt\\ &=\frac{1}{T} \int_{a}^{b} e^{-2\pi i (k/T)t}f(t) dt\\\end{aligned} ck=T12T2Te2πi(k/T)tf(t)dt=T1abe2πi(k/T)tf(t)dt
∣ c k ∣ = 1 T ∣ ∫ a b e − 2 π i ( k / T ) t f ( t ) d t ∣ ≤ 1 T ∫ a b ∣ e − 2 π i ( k / T ) t ∣ ∣ f ( t ) ∣ d t ≤ 1 T ∫ a b ∣ f ( t ) ∣ d t ≤ M T → 0 \begin{aligned}|c_k|&= \frac{1}{T}\left| \int_{a}^{b} e^{-2\pi i (k/T)t}f(t) dt\right|\\ &\le \frac{1}{T}\int_{a}^{b} \left|e^{-2\pi i (k/T)t}\right|\left|f(t)\right| dt\\ &\le \frac{1}{T}\int_{a}^{b} \left|f(t)\right| dt\\ &\le \frac{M}{T}\rightarrow 0 \end{aligned} ck=T1abe2πi(k/T)tf(t)dtT1abe2πi(k/T)tf(t)dtT1abf(t)dtTM0
这不能得到有用的结果,必须寻找其他途径

记线性算子 F f ( k T ) = ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t \mathcal{F}f(\frac{k}{T})=\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{-2\pi i (k/T)t}f(t) dt Ff(Tk)=2T2Te2πi(k/T)tf(t)dt
f ( t ) = ∑ k = − ∞ ∞ F f ( k T ) e 2 π i ( k / T ) t 1 T f(t) = \sum_{k = -\infty}^\infty\mathcal{F}f(\frac{k}{T}) e^{2\pi i (k/T)t}\frac{1}{T} f(t)=k=Ff(Tk)e2πi(k/T)tT1
T → ∞ T\rightarrow \infty T时, k T \frac{k}{T} Tk趋于连续,记为 s ∈ ( − ∞ , ∞ ) s\in (-\infty,\infty) s(,),则求和变成积分
F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t \mathcal{F}f(s)=\int_{-\infty}^{\infty}e^{-2\pi i st}f(t) dt Ff(s)=e2πistf(t)dt
f ( t ) = ∫ − ∞ ∞ F f ( s ) e 2 π i s t d s f(t) = \int_{-\infty}^\infty \mathcal{F} f(s) e^{2\pi i st} ds f(t)=Ff(s)e2πistds
我们需要知道积分的收敛问题。
傅里叶变换将 f ( t ) f(t) f(t)分解为组成成分 e 2 π i s t e^{2\pi i st} e2πist,逆变换则从组成成分合成原函数
f ( t ) f(t) f(t)定义在时域, F f ( s ) \mathcal{F}f(s) Ff(s)定义在频域
信号都有一个频谱,频谱确定了信号

正逆变换
F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t F − 1 g ( t ) = ∫ − ∞ ∞ e 2 π i s t g ( s ) d s \mathcal{F}f(s) = \int_{-\infty}^\infty e^{-2\pi i st}f(t) dt\\ \mathcal{F}^{-1}g(t) = \int_{-\infty}^\infty e^{2\pi i st}g(s) ds Ff(s)=e2πistf(t)dtF1g(t)=e2πistg(s)ds

傅里叶 变换表明,对函数的傅里叶变换进行反变换得到原函数
F − 1 F f = f F F − 1 g = g \mathcal{F}^{-1}\mathcal{F}f=f\\ \mathcal{F}\mathcal{F}^{-1}g=g F1Ff=fFF1g=g
在0点处,傅里叶变换为函数的平均值
F f ( 0 ) = ∫ − ∞ ∞ e 2 π i 0 t f ( t ) d t = ∫ − ∞ ∞ f ( t ) d t \mathcal{F} f(0) = \int_{-\infty}^\infty e^{2\pi i 0t} f(t) dt = \int_{-\infty}^\infty f(t)dt Ff(0)=e2πi0tf(t)dt=f(t)dt
F − 1 g ( 0 ) = ∫ − ∞ ∞ g ( s ) d s \mathcal{F} ^{-1} g(0) = \int_{-\infty}^\infty g(s) ds F1g(0)=g(s)ds

Examples:
矩形函数,或者叫 − 1 2 到 1 2 的 特 征 函 数 -\frac{1}{2}到\frac{1}{2}的特征函数 2121
Π ( t ) = { 1 ∣ t ∣ &lt; 1 2 0 ∣ t ∣ ≥ 1 2 \Pi(t) = \begin{cases} \begin{aligned} 1 \quad &amp;|t| &lt; \frac{1}{2}\\ 0 \quad &amp;|t|\ge \frac{1}{2} \end{aligned} \end{cases} Π(t)=10t<21t21

F Π ( s ) = ∫ − ∞ ∞ e − 2 π i s t Π ( t ) d t = ∫ − 1 2 1 2 e − 2 π i s t d t = [ 1 − 2 π i s e − 2 π i s t ] ∣ − 1 2 1 2 = − 1 2 π i s e − π i s + 1 2 π i s e π i s = 1 π s ( e π i s − e − π i s 2 i ) = sin ⁡ π s π s \begin{aligned}\mathcal{F} \Pi(s) &amp;= \int_{-\infty}^\infty e^{-2\pi i st} \Pi(t) dt\\ &amp;= \int_{-\frac{1}{2}}^{\frac{1}{2}}e^{-2\pi i st} dt\\ &amp;=\left[\frac{1}{-2\pi i s} e^{-2\pi i st} \right] \left|_{-\frac{1}{2}}^{\frac{1}{2}} \right. = \frac{-1}{2\pi i s} e^{-\pi i s} + \frac{1}{2\pi i s} e^{\pi i s}\\ &amp;=\frac{1}{\pi s} \left(\frac{e^{\pi i s} - e^{-\pi i s}}{2i} \right) = \frac{\sin \pi s}{\pi s} \end{aligned} FΠ(s)=e2πistΠ(t)dt=2121e2πistdt=[2πis1e2πist]2121=2πis1eπis+2πis1eπis=πs1(2ieπiseπis)=πssinπs
最后这个函数就是sinc函数 s i n c ( s ) = sin ⁡ π s π s sinc(s) = \frac{\sin \pi s}{\pi s} sinc(s)=πssinπs
函数图像:
在这里插入图片描述

三角形函数

Λ ( t ) = { 1 − ∣ t ∣ ∣ t ∣ ≤ 1 0 ∣ t ∣ ≥ 1 \Lambda(t) = \begin{cases}1-|t| \quad &amp;|t| \le 1\\ 0 \quad &amp; |t| \ge 1 \end{cases} Λ(t)={ 1t0t1t1
F Λ ( s ) = ∫ − ∞ ∞ e − 2 π i s t Λ ( t ) d t = ∫ − 1 0 e − 2 π i s t ( 1 + t ) d t + ∫ 0 1 e − 2 π i s t ( 1 − t ) d t = sin ⁡ 2 π s π 2 s 2 = s i n c 2 ( s ) \begin{aligned}\mathcal{F} \Lambda(s) &amp;= \int_{-\infty}^\infty e^{-2\pi i st}\Lambda (t) dt\\ &amp;=\int_{-1}^0 e^{-2\pi i st} (1+t) dt + \int_0^1 e^{-2\pi i st}(1-t)dt\\ &amp;=\frac{\sin^2 \pi s}{\pi^2 s^2} =sinc^2 (s)\end{aligned} FΛ(s)=e2πistΛ(t)dt=10e2πist(1+t)dt+01e2πist(1t)dt=π2s2sin2πs=sinc2(s)

傅里叶变换符号

在不同的上下文和材料中,傅里叶的定义和符号是变化的(不是唯一的)
比如
f ^ ( s ) = F f ( s ) \hat{f}(s) = \mathcal{F}f(s) f^(s)=Ff(s)
f ˇ ( t ) = F − 1 f ( t ) \check{f}(t) = \mathcal{F}^{-1}f(t) fˇ(t)=F1f(t)
或者
f ( t ) , F ( s ) f(t),F(s) f(t)F(s)

有时候将正变换表示为(正负变换相调换)
F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t \mathcal{F}f(s) = \int_{-\infty}^\infty e^{-2\pi i st}f(t) dt Ff(s)=e2πistf(t)dt
有时候表示为
F f ( s ) = ∫ − ∞ ∞ e 2 π i s t f ( t ) d t \mathcal{F}f(s) = \int_{-\infty}^\infty e^{2\pi i st}f(t) dt Ff(s)=e2πistf(t)dt

高斯函数

f ( t ) = e − π t 2 f(t) = e^{-\pi t^2} f(t)=eπt2指数加 π \pi π使得面积为1,则
F f ( s 0 = e − π s 2 \mathcal{F} f(s0 = e^{-\pi s^2} Ff(s0=eπs2
为本身。我们得到结论,高斯函数的傅里叶变换等于本身
证明:
F ( s ) = ∫ − ∞ ∞ e − 2 π i s t e − π t 2 d t F(s) = \int_{-\infty}^\infty e^{-2\pi i st}e^{-\pi t^2}dt F(s)=e2πisteπt2dt
求微分
F ′ ( s ) = ∫ − ∞ ∞ d d s ( e − 2 π i s t e − π t 2 ) d t = ∫ − ∞ ∞ − 2 π i t e − 2 π i s t e − π t 2 d t = i ∫ − ∞ ∞ e − 2 π i s t ( − 2 π t e − π t 2 ) d t \begin{aligned} F&#x27;(s)&amp;=\int_{-\infty}^\infty \frac{d}{ds} \left(e^{-2\pi i st}e^{-\pi t^2} \right)dt \\ &amp;= \int_{-\infty}^\infty -2\pi i t e^{-2\pi i st}e^{-\pi t^2}dt \\ &amp;=i \int_{-\infty}^\infty e^{-2\pi i st} (-2\pi te^{-\pi t^2})dt \end{aligned} F(s)=dsd(e2πisteπt2)dt=

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值