傅里叶变换及其应用笔记(part 1)

斯坦福EE261

录)

预备内容:

由Fourier级数过渡到Fourier分析(源于周期性,空间周期性和时间周期性)
傅里叶变换作为Fourier级数的极限情况,用来分析非周期现象,有些概念两者通用,有些不同
分析:分解一个函数(信号)为一些简单的部分
合成:吧基本部分重组成信号本身
分析和合成是由线性运算完成的,就是积分和序列
Fourier分析是线性系统的一部分
和群论有关的研究对称性

周期性:三角函数表示复杂函数

并非所有现象都有周期性,即使为周期现象,最终也会消失,然而cos,sin是无限的,但在一段时间内,即使没有周期性也可以用周期延拓使其成为周期现象

用来表示复杂信号(函数),使用cos和sin(通过改变相位和频率相加)周期为1
∑ k = 1 N A k sin ⁡ ( s π k t + φ k ) \sum_{k=1}^N A_k \sin(s\pi k t + \varphi_k) k=1NAksin(sπkt+φk)
可以看成音频的叠加(音乐音符的组合)可以产生声音
上式的另一个形式为
∑ k = 1 N a k sin ⁡ 2 π k t + b k cos ⁡ 2 π k t \sum_{k=1}^N a_k \sin 2\pi kt +b_k \cos 2\pi kt k=1Naksin2πkt+bkcos2πkt
再加一个常数
a 0 2 + ∑ k = 1 N a k sin ⁡ 2 π k t + b k cos ⁡ 2 π k t \frac{a_0}{2}+\sum_{k=1}^N a_k \sin 2\pi kt +b_k \cos 2\pi kt 2a0+k=1Naksin2πkt+bkcos2πkt
e 2 π i k t = cos ⁡ 2 π k t + i sin ⁡ 2 π k t e^{2\pi i kt} = \cos 2\pi kt + i \sin 2\pi kt e2πikt=cos2πkt+isin2πkt
cos ⁡ 2 π k t = e 2 π i k t + e − 2 π i k t 2 sin ⁡ 2 π k t = e 2 π i k t − e − 2 π i k t 2 i \cos 2\pi kt = \frac{e^{2\pi i kt} + e^{-2\pi i kt}}{2}\\ \sin 2\pi kt = \frac{e^{2\pi i kt} - e^{-2\pi i kt}}{2i} cos2πkt=2e2πikt+e2πiktsin2πkt=2ie2πikte2πikt
得,和式可表示为( c k c_k ck为复数,满足对称性 c − k = c k ‾ c_{-k} = \overline{c_k} ck=ck,因为结果为实数)
∑ k = − N N c k e 2 π i k t \sum_{k = -N}^Nc_k e^{2\pi i kt} k=NNcke2πikt
对于一个周期性为1的函数 f ( t ) f(t) f(t),它能表示成
f ( t ) = ∑ k = − n n c k e 2 π i k t f(t) = \sum_{k = -n}^nc_k e^{2\pi i kt} f(t)=k=nncke2πikt
先不管为什么,我们假设等式成立,那么怎么求 c k c_k ck,分离系数

c m e 2 π i m t = f ( t ) − ∑ k   ≠ m e 2 π i k t c_m e^{2\pi i m t} = f(t) - \sum_{k \,\ne m} e^{2\pi i kt} cme2πimt=f(t)k̸=me2πikt
两边乘 e − 2 π i m t e^{-2\pi i m t} e2πimt,的

c m = f ( t ) e − 2 π i m t − ∑ k   ≠ m e 2 π i k t e − 2 π i m t c_m = f(t)e^{-2\pi i m t} - \sum_{k \,\ne m} e^{2\pi i kt} e^{-2\pi i m t} cm=f(t)e2πimtk̸=me2πikte2πimt
做积分(其实就是内积)
c m = ∫ 0 1 c m d t = ∫ 0 1 f ( t ) e − 2 π i m t d t + 0 c_m = \int_0^1 c_m dt =\int_0^1 f(t)e^{-2\pi i m t} dt + 0 cm=01cmdt=01f(t)e2πimtdt+0

将一般周期函数表为简单周期函数和

考虑前面剩下的问题:为什么能这么表示,什么时候能表示
f ^ ( k ) = ∫ 0 1 f ( t ) e − 2 π i k t d t \hat{f}(k)=\int_0^1 f(t)e^{-2\pi i k t} dt f^(k)=01f(t)e2πiktdt表示 f ( t ) f(t) f(t)的第 k k k个系数
在这里插入图片描述
上面阶梯函数是不能表示成有限和的,对于
三角
就算上面这样的连续函数也是不行的,因为无限可微的函数的有限组合也是无限可微的,所以表示成有限和的必要条件是无限可微,对于不是很光滑的地方,我们就需要更高频的成分去弥补它
所以为了表示更一般的周期现象,必须考虑无限和
∑ − ∞ ∞ f ( t ) e 2 π i k t \sum_{-\infty}^{\infty}f(t) e^{2\pi i kt} f(t)e2πikt
还要确定它是否收敛,需要一些消去技巧(见傅里叶分析导论)
连续的情况它收敛于 f ( t ) f(t) f(t),为逐点收敛
如果 f ( t ) f(t) f(t)可微,那么级数一致收敛到 f ( t ) f(t) f(t)
对于不连续的情况,如果 t 0 t_0 t0为跳跃不连续点,那么它收敛于 1 2 ( f ( t 0 + ) + f ( t 0 − ) ) \frac{1}{2}(f(t_0^+)+f(t_0^-)) 21(f(t0+)+f(t0))
当满足一些情况的时候,级数均方收敛
只要有一点不光滑,就会产生无穷的傅里叶级数
补充,内积定义:见分析学,可以定义内积为如下
< f , g > = ∫ 0 1 f ( t ) g ( t ) ‾ d t \left<f,g\right>=\int_0^1 f(t) \overline{g(t)}dt f,g=01f(t)g(t)dt
范数为 < f , f > = ∥ f ∥ 2 = ∫ 0 1 f ( t ) f ( t ) ‾ d t = ∫ 0 1 ∣ f ( t ) ∣ 2 d t \left<f,f \right>=\|f\|^2 =\int_0^1 f(t) \overline{f(t)}dt =\int_0^1 |f(t)|^2dt f,f=f2=01f(t)f(t)dt=01f(t)2dt
可以证明 e 2 π i n t , n ∈ Z e^{2\pi i nt},n \in \mathbb{Z} e2πint,nZ L 2 ( 0 , 1 ) L^2(0,1) L2(0,1)的正交基,并且是完备的
傅里叶级数可以看成分到正交基上分量的和

瑞利等式(Rayleigh equality):
∫ 0 1 ∣ f ∣ 2 d t = ∑ − ∞ ∞ ∣ f ^ ( k ) ∣ 2 \int_0^1 |f|^2 dt = \sum_{-\infty}^\infty |\hat{f}(k)|^2 01f2dt=f^(k)2
可以看成能量部分和为总和

应用(热方程)

heat flow(热流)物理导致傅里叶分析的快速发展
有一个空间区域,有初始温度分布 f ( x ) f(x) f(x),温度如何随时间和位置变化
关注一个热环(周长为1), u ( x , t ) u(x,t) u(x,t)为我们所要找的
在这里插入图片描述
温度为空间的周期函数, u ( x + 1 , t ) = u ( x , t ) u(x+1,t) = u(x,t) u(x+1,t)=u(x,t),对 x x x进行展开
u ( x , t ) = ∑ − ∞ ∞ c k e 2 π i k x = ∑ − ∞ ∞ c k ( t ) e 2 π i k x u(x,t) = \sum_{-\infty}^\infty c_k e^{2\pi i kx} = \sum_{-\infty}^\infty c_k(t) e^{2\pi i kx} u(x,t)=cke2πikx=ck(t)e2πikx

Heat equation (热方程,下标表示偏导,这是偏微分方程):
温度随时间变化跟周围温度差大小成正比,原理见另一篇博客
多变量微积分中散度定理关于扩散方程的推导
一维: u t = a u x x u_t = au_{xx} ut=auxx( a a a和物理特性有关),为了方便这里令 a = 1 2 a=\frac{1}{2} a=21
u t = 1 2 u x x u_t = \frac{1}{2}u_{xx} ut=21uxx
u t = ∑ − ∞ ∞ c k ′ ( t ) e 2 π i k x u_t=\sum_{-\infty}^\infty c_k'(t) e^{2\pi i kx} ut=ck(t)e2πikx
u x x = ∑ − ∞ ∞ c k ( t ) ( 2 π i k ) 2 e 2 π i k x u_{xx}=\sum_{-\infty}^\infty c_k(t) (2\pi i k)^2e^{2\pi i kx} uxx=ck(t)(2πik)2e2πikx
对应项相等,得到 c k ′ ( t ) = − 1 2 c k ( t ) ( 4 π 2 k 2 ) c_k'(t)=-\frac{1}{2}c_k(t)(4\pi^2k^2) ck(t)=21ck(t)(4π2k2)

c k ′ ( t ) = − 2 π 2 k 2 c k ( t ) c_k'(t) = -2\pi^2 k^2 c_k(t) ck(t)=2π2k2ck(t)
这是一个ODE解为
c k ( t ) = c k ( 0 ) e − 2 π 2 k 2 t c_k(t) = c_k(0)e^{-2\pi^2k^2t} ck(t)=ck(0)e2π2k2t

u ( x , t ) = ∑ − ∞ ∞ c k ( t ) e 2 π i k x u(x,t) = \sum_{-\infty}^\infty c_k(t) e^{2\pi i kx} u(x,t)=ck(t)e2πikx
t = 0 t=0 t=0,
u ( x , 0 ) = ∑ − ∞ ∞ c k ( 0 ) e 2 π i k x u(x,0) = \sum_{-\infty}^\infty c_k(0) e^{2\pi i kx} u(x,0)=ck(0)e2πikx
也就是
f ( x ) = u ( x , 0 ) = ∑ k = − ∞ ∞ c k ( 0 ) e 2 π i k x f(x) = u(x,0) = \sum_{k=-\infty}^\infty c_k(0) e^{2\pi i kx} f(x)=u(x,0)=k=ck(0)e2πikx
c k ( 0 ) = ∫ f ( x ) e − 2 π i k x d x = f ^ ( k ) c_k(0)=\int f(x) e^{-2\pi i k x}dx = \hat{f}(k) ck(0)=f(x)e2πikxdx=f^(k)
代入上面的,得到
u ( x , t ) = ∑ k = − ∞ ∞ f ^ ( k ) e − 2 π 2 k 2 t e 2 π i k x u(x,t) = \sum_{k=-\infty}^\infty \hat{f}(k) e^{-2\pi^2 k^2 t }e^{2\pi ikx} u(x,t)=k=f^(k)e2π2k2te2πikx

以另一种方式写
f ^ ( k ) = ∫ 0 1 e − 2 π i k y f ( y ) d y \hat{f}(k) = \int_0^1 e^{-2\pi i ky}f(y)dy f^(k)=01e2πikyf(y)dy
u ( x , t ) = ∑ k = − ∞ ∞ c k ( t ) e 2 π i k x = ∑ k = − ∞ ∞ c k ( 0 ) e − 2 π 2 k 2 t e 2 π i k x = ∑ k = − ∞ ∞ ∫ 0 1 f ( y ) e − 2 π i k y d y   e − 2 π 2 k 2 t e 2 π i k x = ∫ 0 1 ( ∑ k = − ∞ ∞ e − 2 π i k y e − 2 π 2 k 2 t e 2 π i k x ) f ( y ) d y = ∫ 0 1 ( e 2 π i k ( x − y ) e − 2 π 2 k 2 t ) f ( y ) d y \begin{aligned}u(x,t) &= \sum_{k=-\infty}^\infty c_k(t)e^{2\pi ikx}\\ &= \sum_{k=-\infty}^\infty c_k(0) e^{-2\pi^2 k^2t} e^{2\pi ikx} \\ &= \sum_{k=-\infty}^\infty \int_0^1 f(y) e^{-2\pi i k y }dy \,e^{-2\pi^2 k^2t} e^{2\pi ikx}\\ &=\int_0^1\left(\sum_{k=-\infty}^\infty e^{-2\pi i k y }e^{-2\pi^2 k^2t} e^{2\pi ikx} \right) f(y) dy\\ &=\int_0^1\left(e^{2\pi i k(x - y)}e^{-2\pi^2 k ^2 t} \right) f(y) dy\end{aligned} u(x,t)=k=ck(t)e2πikx=k=ck(0)e2π2k2te2πikx=k=01f(y)e2πikydye2π2k2te2πikx=01(k=e2πikye2π2k2te2πikx)f(y)dy=01(e2πik(xy)e2π2k2t)f(y)dy

g ( x , t ) = e 2 π i k x e − 2 π 2 k 2 t g(x,t)=e^{2\pi i kx}e^{-2\pi^2 k ^2 t} g(x,t)=e2πikxe2π2k2t

u ( x , t ) = ∫ 0 1 g ( x − y , t ) f ( y ) d y u(x,t) = \int_0^1 g(x - y,t) f(y) dy u(x,t)=01g(xy,t)f(y)dy
这表达了 u ( x m t ) u(xmt) u(xmt) f ( x ) f(x) f(x)与热核函数 g ( x , t ) g(x,t) g(x,t)的卷积
g的不同叫法:热核函数也称为格林函数
(泊松核和狄利克雷问题也会类似)

傅里叶变换(周期现象到非周期现象)

将非周期函数看做周期无限函数。傅里叶 变换是一种一般(也就是另一种极限的情况,即周期无限)情况,即傅里叶级数的极限形式
对于周期T的函数(再让 T → ∞ T\rightarrow \infty T
傅里叶基为 e 2 π i k ( t / T ) e^{2\pi i k (t/T)} e2πik(t/T),傅里叶级数为
f ( t ) = ∑ c k e 2 π i ( k / T ) t c k = 1 T ∫ 0 1 e − 2 π i ( k / T ) t f ( t ) d t f(t) = \sum c_k e^{2\pi i (k / T)t}\\ c_k = \frac{1}{T} \int_0^1 e^{-2\pi i (k/T)t}f(t) dt f(t)=cke2πi(k/T)tck=T101e2πi(k/T)tf(t)dt
(缩放即可,然而为什么基完备这是另一个问题)
可写成
c k = 1 T ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i (k/T)t}f(t) dt ck=T12T2Te2πi(k/T)tf(t)dt

频谱Picture of frequency( spectrum)
在这里插入图片描述
它是对称的因为 c c c对称,周期为 T T T,则间隔为 1 T \frac{1}{T} T1
T → ∞ T\rightarrow \infty T的时候,频谱变得连续。
不能直接让 T → ∞ T\rightarrow \infty T得到傅里叶变换,因为当 T → ∞ T\rightarrow \infty T时,由
c k = 1 T ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t c_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i (k/T)t}f(t) dt ck=T12T2Te2πi(k/T)tf(t)dt
计算的 c k c_k ck趋于0
比如 f ( t ) f(t) f(t)是一个只在[a,b]上不为0的函数,将其周期延 − T 2 -\frac{T}{2} 2T T 2 \frac{T}{2} 2T包含[a,b]即可)
我们计算 c k = 1 T ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t = 1 T ∫ a b e − 2 π i ( k / T ) t f ( t ) d t \begin{aligned}c_k &= \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-2\pi i (k/T)t}f(t) dt\\ &=\frac{1}{T} \int_{a}^{b} e^{-2\pi i (k/T)t}f(t) dt\\\end{aligned} ck=T12T2Te2πi(k/T)tf(t)dt=T1abe2πi(k/T)tf(t)dt
∣ c k ∣ = 1 T ∣ ∫ a b e − 2 π i ( k / T ) t f ( t ) d t ∣ ≤ 1 T ∫ a b ∣ e − 2 π i ( k / T ) t ∣ ∣ f ( t ) ∣ d t ≤ 1 T ∫ a b ∣ f ( t ) ∣ d t ≤ M T → 0 \begin{aligned}|c_k|&= \frac{1}{T}\left| \int_{a}^{b} e^{-2\pi i (k/T)t}f(t) dt\right|\\ &\le \frac{1}{T}\int_{a}^{b} \left|e^{-2\pi i (k/T)t}\right|\left|f(t)\right| dt\\ &\le \frac{1}{T}\int_{a}^{b} \left|f(t)\right| dt\\ &\le \frac{M}{T}\rightarrow 0 \end{aligned} ck=T1abe2πi(k/T)tf(t)dtT1abe2πi(k/T)tf(t)dtT1abf(t)dtTM0
这不能得到有用的结果,必须寻找其他途径

记线性算子 F f ( k T ) = ∫ − T 2 T 2 e − 2 π i ( k / T ) t f ( t ) d t \mathcal{F}f(\frac{k}{T})=\int_{-\frac{T}{2}}^{\frac{T}{2}}e^{-2\pi i (k/T)t}f(t) dt Ff(Tk)=2T2Te2πi(k/T)tf(t)dt
f ( t ) = ∑ k = − ∞ ∞ F f ( k T ) e 2 π i ( k / T ) t 1 T f(t) = \sum_{k = -\infty}^\infty\mathcal{F}f(\frac{k}{T}) e^{2\pi i (k/T)t}\frac{1}{T} f(t)=k=Ff(Tk)e2πi(k/T)tT1
T → ∞ T\rightarrow \infty T时, k T \frac{k}{T} Tk趋于连续,记为 s ∈ ( − ∞ , ∞ ) s\in (-\infty,\infty) s(,),则求和变成积分
F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t \mathcal{F}f(s)=\int_{-\infty}^{\infty}e^{-2\pi i st}f(t) dt Ff(s)=e2πistf(t)dt
f ( t ) = ∫ − ∞ ∞ F f ( s ) e 2 π i s t d s f(t) = \int_{-\infty}^\infty \mathcal{F} f(s) e^{2\pi i st} ds f(t)=Ff(s)e2πistds
我们需要知道积分的收敛问题。
傅里叶变换将 f ( t ) f(t) f(t)分解为组成成分 e 2 π i s t e^{2\pi i st} e2πist,逆变换则从组成成分合成原函数
f ( t ) f(t) f(t)定义在时域, F f ( s ) \mathcal{F}f(s) Ff(s)定义在频域
信号都有一个频谱,频谱确定了信号

正逆变换
F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t F − 1 g ( t ) = ∫ − ∞ ∞ e 2 π i s t g ( s ) d s \mathcal{F}f(s) = \int_{-\infty}^\infty e^{-2\pi i st}f(t) dt\\ \mathcal{F}^{-1}g(t) = \int_{-\infty}^\infty e^{2\pi i st}g(s) ds Ff(s)=e2πistf(t)dtF1g(t)=e2πistg(s)ds

傅里叶 变换表明,对函数的傅里叶变换进行反变换得到原函数
F − 1 F f = f F F − 1 g = g \mathcal{F}^{-1}\mathcal{F}f=f\\ \mathcal{F}\mathcal{F}^{-1}g=g F1Ff=fFF1g=g
在0点处,傅里叶变换为函数的平均值
F f ( 0 ) = ∫ − ∞ ∞ e 2 π i 0 t f ( t ) d t = ∫ − ∞ ∞ f ( t ) d t \mathcal{F} f(0) = \int_{-\infty}^\infty e^{2\pi i 0t} f(t) dt = \int_{-\infty}^\infty f(t)dt Ff(0)=e2πi0tf(t)dt=f(t)dt
F − 1 g ( 0 ) = ∫ − ∞ ∞ g ( s ) d s \mathcal{F} ^{-1} g(0) = \int_{-\infty}^\infty g(s) ds F1g(0)=g(s)ds

Examples:
矩形函数,或者叫 − 1 2 到 1 2 的 特 征 函 数 -\frac{1}{2}到\frac{1}{2}的特征函数 2121
Π ( t ) = { 1 ∣ t ∣ &lt; 1 2 0 ∣ t ∣ ≥ 1 2 \Pi(t) = \begin{cases} \begin{aligned} 1 \quad &amp;|t| &lt; \frac{1}{2}\\ 0 \quad &amp;|t|\ge \frac{1}{2} \end{aligned} \end{cases} Π(t)=10t<21t21

F Π ( s ) = ∫ − ∞ ∞ e − 2 π i s t Π ( t ) d t = ∫ − 1 2 1 2 e − 2 π i s t d t = [ 1 − 2 π i s e − 2 π i s t ] ∣ − 1 2 1 2 = − 1 2 π i s e − π i s + 1 2 π i s e π i s = 1 π s ( e π i s − e − π i s 2 i ) = sin ⁡ π s π s \begin{aligned}\mathcal{F} \Pi(s) &amp;= \int_{-\infty}^\infty e^{-2\pi i st} \Pi(t) dt\\ &amp;= \int_{-\frac{1}{2}}^{\frac{1}{2}}e^{-2\pi i st} dt\\ &amp;=\left[\frac{1}{-2\pi i s} e^{-2\pi i st} \right] \left|_{-\frac{1}{2}}^{\frac{1}{2}} \right. = \frac{-1}{2\pi i s} e^{-\pi i s} + \frac{1}{2\pi i s} e^{\pi i s}\\ &amp;=\frac{1}{\pi s} \left(\frac{e^{\pi i s} - e^{-\pi i s}}{2i} \right) = \frac{\sin \pi s}{\pi s} \end{aligned} FΠ(s)=e2πistΠ(t)dt=2121e2πistdt=[2πis1e2πist]2121=2πis1eπis+2πis1eπis=πs1(2ieπiseπis)=πssinπs
最后这个函数就是sinc函数 s i n c ( s ) = sin ⁡ π s π s sinc(s) = \frac{\sin \pi s}{\pi s} sinc(s)=πssinπs
函数图像:
在这里插入图片描述

三角形函数

Λ ( t ) = { 1 − ∣ t ∣ ∣ t ∣ ≤ 1 0 ∣ t ∣ ≥ 1 \Lambda(t) = \begin{cases}1-|t| \quad &amp;|t| \le 1\\ 0 \quad &amp; |t| \ge 1 \end{cases} Λ(t)={1t0t1t1
F Λ ( s ) = ∫ − ∞ ∞ e − 2 π i s t Λ ( t ) d t = ∫ − 1 0 e − 2 π i s t ( 1 + t ) d t + ∫ 0 1 e − 2 π i s t ( 1 − t ) d t = sin ⁡ 2 π s π 2 s 2 = s i n c 2 ( s ) \begin{aligned}\mathcal{F} \Lambda(s) &amp;= \int_{-\infty}^\infty e^{-2\pi i st}\Lambda (t) dt\\ &amp;=\int_{-1}^0 e^{-2\pi i st} (1+t) dt + \int_0^1 e^{-2\pi i st}(1-t)dt\\ &amp;=\frac{\sin^2 \pi s}{\pi^2 s^2} =sinc^2 (s)\end{aligned} FΛ(s)=e2πistΛ(t)dt=10e2πist(1+t)dt+01e2πist(1t)dt=π2s2sin2πs=sinc2(s)

傅里叶变换符号

在不同的上下文和材料中,傅里叶的定义和符号是变化的(不是唯一的)
比如
f ^ ( s ) = F f ( s ) \hat{f}(s) = \mathcal{F}f(s) f^(s)=Ff(s)
f ˇ ( t ) = F − 1 f ( t ) \check{f}(t) = \mathcal{F}^{-1}f(t) fˇ(t)=F1f(t)
或者
f ( t ) , F ( s ) f(t),F(s) f(t)F(s)

有时候将正变换表示为(正负变换相调换)
F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t \mathcal{F}f(s) = \int_{-\infty}^\infty e^{-2\pi i st}f(t) dt Ff(s)=e2πistf(t)dt
有时候表示为
F f ( s ) = ∫ − ∞ ∞ e 2 π i s t f ( t ) d t \mathcal{F}f(s) = \int_{-\infty}^\infty e^{2\pi i st}f(t) dt Ff(s)=e2πistf(t)dt

高斯函数

f ( t ) = e − π t 2 f(t) = e^{-\pi t^2} f(t)=eπt2指数加 π \pi π使得面积为1,则
F f ( s 0 = e − π s 2 \mathcal{F} f(s0 = e^{-\pi s^2} Ff(s0=eπs2
为本身。我们得到结论,高斯函数的傅里叶变换等于本身
证明:
F ( s ) = ∫ − ∞ ∞ e − 2 π i s t e − π t 2 d t F(s) = \int_{-\infty}^\infty e^{-2\pi i st}e^{-\pi t^2}dt F(s)=e2πisteπt2dt
求微分
F ′ ( s ) = ∫ − ∞ ∞ d d s ( e − 2 π i s t e − π t 2 ) d t = ∫ − ∞ ∞ − 2 π i t e − 2 π i s t e − π t 2 d t = i ∫ − ∞ ∞ e − 2 π i s t ( − 2 π t e − π t 2 ) d t \begin{aligned} F&#x27;(s)&amp;=\int_{-\infty}^\infty \frac{d}{ds} \left(e^{-2\pi i st}e^{-\pi t^2} \right)dt \\ &amp;= \int_{-\infty}^\infty -2\pi i t e^{-2\pi i st}e^{-\pi t^2}dt \\ &amp;=i \int_{-\infty}^\infty e^{-2\pi i st} (-2\pi te^{-\pi t^2})dt \end{aligned} F(s)=dsd(e2πisteπt2)dt=2πite2πisteπt2dt=ie2πist(2πteπt2)dt
分部积分
= i ∫ − ∞ ∞ e − 2 π i s t d e − π t 2 = i e − 2 π i s t e − π t 2 ∣ − ∞ ∞ − i ∫ − ∞ ∞ e − π t 2 d e − 2 π i s t = − ∫ − ∞ ∞ 2 π s &ThinSpace; e − π t 2 e − 2 π i s t d t = − 2 π s ∫ − ∞ ∞ e − 2 π i s t e − π t 2 d t = − 2 π s F ( s ) \begin{aligned} &amp;=i\int_{-\infty}^\infty e^{-2\pi i st} de^{-\pi t^2} \\ &amp;=ie^{-2\pi i st} e^{-\pi t^2} \bigg| ^\infty_{-\infty} - i \int_{-\infty}^\infty e^{-\pi t^2} d e^{-2\pi i st}\\ &amp;=- \int_{-\infty}^\infty 2\pi s \,e^{-\pi t^2}e^{-2\pi i st} dt\\ &amp;=-2\pi s \int_{-\infty}^\infty e^{-2\pi i st} e^{-\pi t^2}dt\\ &amp;=-2\pi s F(s) \end{aligned} =ie2πistdeπt2=ie2πisteπt2ieπt2de2πist=2πseπt2e2πistdt=2πse2πisteπt2dt=2πsF(s)
于是我们得到等式
F ′ ( s ) = − 2 π s F ( s ) F&#x27;(s) = -2\pi sF(s) F(s)=2πsF(s)

(这个ODE表明) F ( 是 ) = F ( 0 ) e − π s 2 F(是) = F(0)e^{-\pi s^2} F(=F(0)eπs2
F ( 0 ) = ∫ − ∞ ∞ f ( t ) d t = 1 F(0) = \int_{-\infty}^\infty f(t) dt= 1 F(0)=f(t)dt=1
F ( s ) = e − π s 2 F(s)=e^{-\pi s^2} F(s)=eπs2
证明完毕

对偶性(傅里叶变换的对偶性质)

根据定义有
F f ( − s ) = F − 1 f ( s ) \mathcal{F} f(-s) = \mathcal{F}^{-1}f(s) Ff(s)=F1f(s)
F f ( s ) = F − 1 f ( − s ) \mathcal{F} f(s) = \mathcal{F}^{-1}f(-s) Ff(s)=F1f(s)

定义 f − ( t ) = f ( − t ) f^-(t) = f(-t) f(t)=f(t)(反转信号),按照记号记 ( F f ) − ( s ) = F f ( − s ) (\mathcal{F}f)^-(s) = \mathcal{F}f(-s) (Ff)(s)=Ff(s)(这是一个记号),则按前面有
( F f ) − = F − 1 f (\mathcal{F}f)^- = \mathcal{F}^{-1}f (Ff)=F1f
还有
F ( f − ) = F − 1 f \mathcal{F} (f^-) = \mathcal{F}^{-1}f F(f)=F1f
所以
( F f ) − = F ( f − ) = F − 1 f (\mathcal{F}f)^- =\mathcal{F} (f^-) = \mathcal{F}^{-1}f (Ff)=F(f)=F1f
根据前面有
F F f = f − \mathcal{F}\mathcal{F}f = f^- FFf=f
因为 F F f = F F − 1 f − = f − \mathcal{F}\mathcal{F}f = \mathcal{F}\mathcal{F}^{-1} f^- = f^- FFf=FF1f=f

例子: s i n c = sin ⁡ π t π t sinc = \frac{\sin \pi t}{\pi t} sinc=πtsinπt
根据对偶性质
F s i n c = F F π = π − = π \mathcal{F} sinc = \mathcal{F}\mathcal{F}\pi = \pi^- = \pi Fsinc=FFπ=π=π
如果直接按照定义求解积分,积分存在严重的收敛问题,难以计算
同样可以得到 F s i n c 2 = Λ \mathcal{F}sinc^2 = \Lambda Fsinc2=Λ

三个重要问题:时延(delays),时域尺度变换,卷积

时延:如果信号移动b,傅里叶变换会怎样
f ( t ) ↔ F ( s ) f(t) \leftrightarrow F(s) f(t)F(s)
f ( t − b ) ↔ ? f(t-b) \leftrightarrow ? f(tb)?

F ( s ) = ∫ − ∞ ∞ − e − 2 π i s t f ( t ) d t F(s) = \int_{-\infty}^\infty -e^{-2\pi i st}f(t) dt F(s)=e2πistf(t)dt

F f ( t − b ) = ∫ − ∞ ∞ e − 2 π i s t f ( t − b ) d t = ∫ − ∞ ∞ e − 2 π i s ( u + b ) f ( u ) d u = e − 2 π i s b ∫ − ∞ ∞ e − 2 π i s u f ( u ) d u = e − 2 π i s b F ( s ) \begin{aligned}\mathcal{F} f(t - b) &amp;= \int_{-\infty}^\infty e^{-2\pi i st} f( t - b) dt\\ &amp;=\int_{-\infty}^\infty e^{-2\pi i s(u+b)}f(u) du \\ &amp;= e^{-2\pi i sb} \int_{-\infty}^\infty e^{-2\pi i su}f(u) du\\ &amp;= e^{-2\pi i sb}F(s) \end{aligned} Ff(tb)=e2πistf(tb)dt=e2πis(u+b)f(u)du=e2πisbe2πisuf(u)du=e2πisbF(s)
即(时延定理),时域的位移导致频域的位移
F ( f ( t ± b ) ) ( s ) = e ± 2 π i s b F ( s ) \mathcal{F}\left(f(t\pm b) \right)(s) =e^{\pm 2\pi i sb} F(s) F(f(t±b))(s)=e±2πisbF(s)
记(复数表示成幅度乘以角度)
F ( s ) = ∣ F ( s ) ∣ e 2 π i θ ( s ) F(s) = |F(s)| e^{2\pi i \theta(s)} F(s)=F(s)e2πiθ(s)

e − 2 π i s b F ( s ) = ∣ F ( s ) ∣ e 2 π i ( θ ( s ) − s b ) e^{-2\pi i sb}F(s) = |F(s)| e^{2\pi i (\theta (s)- sb)} e2πisbF(s)=F(s)e2πi(θ(s)sb)
时域的位移导致频域角度的变换,幅度不变
接下来是尺度变换
f ( t ) ↔ F ( s ) f(t) \leftrightarrow F(s) f(t)F(s)
f ( a t ) ↔ ? f(at) \leftrightarrow ? f(at)?

F ( f ( a t ) ) ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ( a t ) d t \mathcal{F}\left(f(at) \right)(s) = \int_{-\infty}^\infty e^{-2\pi i st} f(at) dt F(f(at))(s)=e2πistf(at)dt
i f &ThinSpace; a &gt; 0 if\, a &gt;0 ifa>0,令 u = a t u = at u=at
F ( f ( a t ) ) ( s ) = 1 a ∫ − ∞ ∞ e − 2 π i ( s / a ) u f ( u ) d u = 1 a ∫ − ∞ ∞ e − 2 π i ( s / a ) u f ( u ) d u = 1 a F ( s a ) \begin{aligned}\mathcal{F}\left(f(at) \right)(s) &amp;= \frac{1}{a}\int_{-\infty}^\infty e^{-2\pi i (s/a)u} f(u) du \\ &amp;=\frac{1}{a}\int_{-\infty}^\infty e^{-2\pi i (s/a)u} f(u) du=\frac{1}{a} F(\frac{s}{a}) \end{aligned} F(f(at))(s)=a1e2πi(s/a)uf(u)du=a1e2πi(s/a)uf(u)du=a1F(as)
i f &ThinSpace; a &lt; 0 if\, a &lt;0 ifa<0,令 u = a t u = at u=at
F ( f ( a t ) ) ( s ) = − 1 a ∫ − ∞ ∞ e − 2 π i ( s / a ) u f ( u ) d u = − 1 a F ( s a ) \mathcal{F}\left(f(at) \right)(s) = -\frac{1}{a}\int_{-\infty}^\infty e^{-2\pi i (s/a)u} f(u) du=-\frac{1}{a} F(\frac{s}{a}) F(f(at))(s)=a1e2πi(s/a)uf(u)du=a1F(as)
综上
F ( f ( a t ) ) ( s ) = 1 ∣ a ∣ F ( s a ) \mathcal{F}\left(f(at) \right)(s) = \frac{1}{|a|} F(\frac{s}{a}) F(f(at))(s)=a1F(as)
f ( a t ) ↔ 1 ∣ a ∣ F ( s a ) f(at) \leftrightarrow \frac{1}{|a|} F(\frac{s}{a}) f(at)a1F(as)
这个结果说明,当 ∣ a ∣ &gt; 1 |a|&gt;1 a>1时,频谱被拉长了,而且变矮, ∣ a ∣ &lt; 1 |a|&lt;1 a<1则相反
即时域压缩(伸长),则频域伸长(压缩)
Heisenberg测不准定理实际上也是依赖傅里叶变换证明,不能同事间压缩时域和频域,即不能同时知道位置和速度

卷积运算

关于怎样使用一个函数对另一个函数或信号进行调制,大部分情况下着手于改变信号的频谱
eg.线性和叠加性
F ( f + g ) = F ( f ) + F ( g ) \mathcal{F}(f+g) = \mathcal{F}(f) + \mathcal{F}(g) F(f+g)=F(f)+F(g)
通过改变频谱调制信号
如果是相乘呢
( F g ) ( F f ) = F ( ? ? f 和 g 的 某 种 组 合 ? ) (\mathcal{F}g)(\mathcal{F}f) = \mathcal{F}(??f和g的某种组合?) (Fg)(Ff)=F(??fg)
G g ( s ) F f ( s ) = ∫ − ∞ ∞ e − 2 π i s t g ( t ) d t ∫ − ∞ ∞ e − 2 π i s x f ( x ) d x = ∫ − ∞ ∞ ∫ − ∞ ∞ e − 2 π i s ( t + x ) g ( t ) f ( x ) d t d x = ∫ − ∞ ∞ ( ∫ − ∞ ∞ e − 2 π i s ( t + x ) g ( t ) d t ) f ( x ) d x \begin{aligned}\mathcal{G} g(s) \mathcal{F} f(s) &amp;= \int_{-\infty}^\infty e^{-2\pi i st } g(t) dt \int_{-\infty}^\infty e^{-2\pi i sx } f(x) dx\\ &amp;= \int_{-\infty}^\infty \int_{-\infty}^\infty e^{-2\pi i s(t+ x) } g(t) f(x) dt dx\\ &amp;= \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-2\pi i s(t+ x) } g(t)dt \right) f(x) dx\end{aligned} Gg(s)Ff(s)=e2πistg(t)dte2πisxf(x)dx=e2πis(t+x)g(t)f(x)dtdx=(e2πis(t+x)g(t)dt)f(x)dx
u = t + x , d u = d t , t = u − x u=t+x,du=dt,t=u-x u=t+x,du=dt,t=ux,的上式为
∫ − ∞ ∞ ( ∫ − ∞ ∞ e − 2 π i s u g ( u − x ) d u ) f ( x ) d x \int_{-\infty}^\infty \left( \int_{-\infty}^\infty e^{-2\pi i su } g(u-x)du \right) f(x) dx (e2πisug(ux)du)f(x)dx
改变积分顺序
∫ − ∞ ∞ ( ∫ − ∞ ∞ g ( u − x ) f ( x ) d x ) e − 2 π i s u d u \int_{-\infty}^\infty \left( \int_{-\infty}^\infty g(u-x)f(x) dx \right) e^{-2\pi i su} du (g(ux)f(x)dx)e2πisudu

定义 h ( u ) = ∫ − ∞ ∞ g ( u − x ) f ( x ) d x h(u)=\int_{-\infty}^\infty g(u-x)f(x) dx h(u)=g(ux)f(x)dx,上面就是
∫ − ∞ ∞ e − 2 π i s u h ( u ) d u = F h ( s ) \int_{-\infty}^\infty e^{-2\pi i su} h(u) du = \mathcal{F}h(s) e2πisuh(u)du=Fh(s)
( F g ) ( F f ) = F h ( s ) (\mathcal{F}g)(\mathcal{F}f) =\mathcal{F}h(s) (Fg)(Ff)=Fh(s)
h ( u ) h(u) h(u)即称为 g g g f f f的卷积函数,定义 g g g f f f的卷积:
( g ∗ f ) ( x ) = ∫ − ∞ ∞ g ( x − y ) f ( y ) d y (g*f)(x)=\int_{-\infty}^\infty g(x-y)f(y) dy (gf)(x)=g(xy)f(y)dy
依照上面的卷积定理我们有
F ( g ∗ f ) = F ( g ) F ( f ) \mathcal{F}(g*f) =\mathcal{F}(g)\mathcal{F}(f) F(gf)=F(g)F(f)
Briggs, William L.Henson写的离散傅里叶手册中有很好的问题例子

eg.:浑浊度研究:与测量睡的清澈度有关,假如得到一张测量数据 T T T。这个数据有很多的毛刺,我们需要去除掉这些毛刺,使之平滑。在频域进行处理,去掉高频的成分,方法是呈上一个矩形函数(也叫低通滤波) Π 2 V c ( 在 − V c 和 V c 之 间 为 1 , 其 他 为 0 ) \Pi_{2V_c}(在-V_c和V_c之间为1,其他为0) Π2Vc(VcVc10)得到
Π 2 V c F T \Pi_{2V_c}\mathcal{F}T Π2VcFT
转换到时域得
2 V c s i n c ( 2 V c t ) ∗ T ( t ) 2V_c sinc(2V_c t) * T(t) 2Vcsinc(2Vct)T(t)
滤波通常(不总是)等同于卷积
在频域中(频域滤波)
G ( s ) = F ( s ) H ( s ) G(s) = F(s) H(s) G(s)=F(s)H(s) H ( s ) H(s) H(s)为传递函数),设计滤波器就是设计一个 H H H
比较常见的事低通滤波器,高通滤波器和带通滤波器
在频域更容易理解滤波器而在时域中转换为卷积就没那么好理解
有时卷积并不容易计算,甚至不能显式表示,如
∫ − ∞ ∞ s i n c ( x − y ) f ( y ) d y \int_{-\infty}^\infty sinc(x - y) f(y) dy sinc(xy)f(y)dy

有什么关于卷积更好的解释? 有很多的解释
在很多情况下,卷积核滤波或平均相关
通常 f f f g g g的卷积比单独考虑 f , g f,g f,g更好(更平滑),比如
Π ∗ Π = Λ \Pi * \Pi = \Lambda ΠΠ=Λ
左边不连续,右边连续
如果 f f f可微 g g g不可微,则 f ∗ g f*g fg可微: ( f ∗ g ) ′ = f ′ ∗ g (f*g)&#x27; = f&#x27; * g (fg)=fg

怎样利用卷积求热方程??

首先
F ( f ′ ) ( s ) = 2 π i s F f ( s ) \mathcal{F}(f&#x27;)(s) = 2\pi i s \mathcal{F}f(s) F(f)(s)=2πisFf(s)
相似的
F ( f ( n ) ) ( s ) = ( 2 π i s ) n F f ( s ) \mathcal{F}(f^{(n)})(s) = (2\pi i s)^n \mathcal{F}f(s) F(f(n))(s)=(2πis)nFf(s)
证明:
假设当 t → ± ∞ , f ( t ) → 0 t\rightarrow \pm \infty ,f(t) \rightarrow 0 t±,f(t)0(一种特殊情形,一般要把函数限制在一个族里面,分析学专门讨论)
F ( f ′ ) ( s ) = ∫ − ∞ ∞ e − 2 π i s t f ′ ( t ) d t = e − 2 π i s t f ( t ) ∣ − ∞ ∞ + 2 π i s ∫ − ∞ ∞ e − 2 π i s t f ( t ) d t = 0 + 2 π i s F f ( s ) \begin{aligned} \mathcal{F}(f&#x27;)(s) &amp;= \int_{-\infty}^\infty e^{-2\pi i st}f&#x27;(t) dt\\ &amp;=e^{-2\pi i st}f(t) \bigg|_{-\infty}^\infty + 2\pi i s \int_{-\infty}^\infty e^{-2\pi i st} f(t) dt \\ &amp;=0 + 2\pi i s \mathcal{F}f(s)\end{aligned} F(f)(s)=e2πistf(t)dt=e2πistf(t)+2πise2πistf(t)dt=0+2πisFf(s)
研究无限长实线热方程, u ( x , t ) , u ( x , 0 ) = f ( x ) u(x,t),u(x,0)=f(x) u(x,t),u(x,0)=f(x)无限周期 u t = 1 2 u x x u_t = \frac{1}{2} u_{xx} ut=21uxx
u ( x , t ) u(x,t) u(x,t)关于 x x x的傅里叶变换为 u ( s , t ) u(s,t) u(s,t),则
F u t = ∫ − ∞ ∞ e − 2 π i s x ∂ u ( x , t ) ∂ t d x = ∂ ∂ t ( ∫ − ∞ ∞ e − 2 π i s x u ( x , t ) d x ) = ∂ ∂ t u ( s , t ) \begin{aligned} \mathcal{F} u_t &amp;= \int_{-\infty}^\infty e^{-2\pi i sx} \frac{\partial u(x,t)}{\partial t}dx\\ &amp;=\frac{\partial}{\partial t}\left( \int_{-\infty}^\infty e^{-2\pi i sx} u (x,t) dx \right) \\ &amp;=\frac{\partial}{\partial t} u(s,t)\end{aligned} Fut=e2πisxtu(x,t)dx=t(e2πisxu(x,t)dx)=tu(s,t)
F u x x = ( 2 π i s ) 2 u ( s , t ) \mathcal{F}u_{xx} = (2\pi i s)^2 u(s,t) Fuxx=(2πis)2u(s,t)
联合上面,得到热方程为
∂ ∂ t u ( s , t ) = − 2 ( π s ) 2 u ( s , t ) \frac{\partial}{\partial t} u(s,t)=- 2(\pi s)^2 u(s,t) tu(s,t)=2(πs)2u(s,t)
这是一个普通的微分方程,解得
u ( s , t ) = u ( s , 0 ) e − 2 π 2 s 2 t u(s,t) = u(s,0) e^{-2\pi^2 s^2 t} u(s,t)=u(s,0)e2π2s2t
u ( s , 0 ) = ∫ − ∞ ∞ e − 2 π i s x u ( x , 0 ) d x = ∫ − ∞ ∞ e − 2 π i s x f ( x ) = F ( s ) u(s,0) = \int_{-\infty}^\infty e^{-2\pi i sx} u(x,0) dx = \int_{-\infty}^\infty e^{-2\pi i sx} f(x) = F(s) u(s,0)=e2πisxu(x,0)dx=e2πisxf(x)=F(s)
所以
u ( s , t ) = F ( s ) e − 2 π 2 s 2 t u(s,t) = F(s) e^{-2\pi^2 s^2 t} u(s,t)=F(s)e2π2s2t
由于
F ( 1 2 π t e − x 2 / 2 t ) = e − 2 π 2 s 2 t \mathcal{F}\left(\frac{1}{\sqrt{2\pi t}}e^{-x^2 /2t} \right) = e^{-2\pi^2 s^2 t} F(2πt 1ex2/2t)=e2π2s2t

u ( x , t ) = f ( x ) ∗ ( 1 2 π t e − x 2 / 2 t ) u(x,t) = f(x) * \left(\frac{1}{\sqrt{2\pi t}}e^{-x^2 /2t} \right) u(x,t)=f(x)(2πt 1ex2/2t)

卷积核中心极限定理(conbolution and the Central Limit Theorem,CLT)

CLT某种程度上阐述了一般钟形曲线的一般形式,也就是概率论中的高斯分布
大部分概率事件,可以看做可以按照钟形曲线进行计算和近似,或者说有高斯函数决定
p ( x ) = 1 2 π e − x 2 / 2 p(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} p(x)=2π 1ex2/2
p ( a ≤ m e a s u r e m e n t ) ≤ b = ∫ a b 1 2 π e − x 2 / 2 d x p(a\le measurement ) \le b = \int_a^b \frac{1}{\sqrt{2\pi}}e^{-x^2/2} dx p(ameasurement)b=ab2π 1ex2/2dx
对矩形函数自身做一次卷积,得到一个三角形函数,做三次卷积则得到一个钟形(更平滑),做四个更平滑。令人惊叹(spooky)的是,不仅对矩形函数,对任意函数,自身卷积做若干次以后,将类似于一个钟形函数
建立:
X X X为随机变量, x x x为时机测量值,测量 x x x如何分布 P X ( x ) P_X(x) PX(x), P a , b ( a ≤ x ≤ b ) = ∫ a b p ( x ) d x P_{a,b}(a\le x \le b) = \int_a^b p(x) dx Pa,b(axb=abp(x)dx
∫ − ∞ ∞ p ( x ) d x = 1 , p ( x ) ≥ 0 \int_{-\infty}^{\infty} p(x) dx = 1,p(x) \ge 0 p(x)dx=1,p(x)0
怎么和卷积联系起来
假设 x 1 , x 2 x_1,x_2 x1,x2是独立随机变量 p 1 ( x 1 ) , p 2 ( x 2 ) , x 1 + x 2 p_1(x_1),p_2(x_2),x_1 + x_2 p1(x1),p2(x2),x1+x2的分布为 p 1 ∗ p 2 p_1 * p_2 p1p2(利用积分变量替换即可得到)
同样可以得到
p ( x 1 + ⋯ + x n ) = p 1 ∗ p 2 ∗ ⋯ ∗ p n p(x_1+\cdots+x_n) = p_1 * p_2 * \cdots * p_n p(x1++xn)=p1p2pn
CLT建立过程
x 1 , ⋯ &ThinSpace; , x n x_1,\cdots,x_n x1,,xn是独立同分布随机变量(iid),记为p(均值为0,方差为1)

∫ − ∞ ∞ x p ( x ) d x = 0 \int_{-\infty}^{\infty} xp(x) dx = 0 xp(x)dx=0
∫ − ∞ ∞ x 2 p ( x ) d x = 1 \int_{-\infty}^{\infty} x^2p(x) dx = 1 x2p(x)dx=1
∫ − ∞ ∞ p ( x ) d x = 1 \int_{-\infty}^{\infty} p(x) dx = 1 p(x)dx=1
S n = x 1 + ⋯ + x n S_n = x_1 + \cdots + x_n Sn=x1++xn,则 , E ( S n ) = 0 , E ( S n 2 ) = n \mathbb{E}(S_n) = 0, \sqrt{\mathbb{E}(S_n^2)} = \sqrt{n} E(Sn)=0,E(Sn2) =n (标准差)
故, S n n \frac{S_n}{\sqrt{n}} n Sn方差为1
CLT:当 n → ∞ n\rightarrow \infty n时,
lim ⁡ n → ∞ p r o b ( a ≤ S n n ≤ b ) = 1 2 π ∫ a b e − x 2 / 2 d x \lim_{n\rightarrow \infty} prob(a \le \frac{S_n}{\sqrt{n}} \le b ) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx nlimprob(an Snb)=2π 1abex2/2dx
非积分形式:如果 P n ( x ) P_n(x) Pn(x) S n n \frac{S_n}{\sqrt{n}} n Sn的分布,则当 n → ∞ n\rightarrow \infty n时,
P n ( x ) → 1 2 π e − x 2 / 2 P_n(x) \rightarrow \frac{1}{\sqrt{2\pi}} e^{-x^2/2} Pn(x)2π 1ex2/2

因为 x 1 + ⋯ + x n x_1+\cdots +x_n x1++xn的分布为 p ∗ n ( x ) = ( p ∗ ⋯ ∗ p ⎵ n 个 ) p^{*n}(x) =( \underbrace{p*\cdots * p}_{n个}) pn(x)=(n pp),则
x 1 + ⋯ + x n n \frac{x_1+\cdots+x_n}{\sqrt{n}} n x1++xn的分布为 n p ∗ n ( n x ) \sqrt{n} p^{*n}(\sqrt{n}x) n pn(n x). ( x 分 布 为 p ( x ) , 则 a x 的 分 布 为 1 a p ( x a ) (x分布为p(x),则ax的分布为\frac{1}{a} p(\frac{x}{a}) (xp(x),axa1p(ax)

P r ( a X ≤ x ) = P r ( X ≤ x a ) = ∫ − ∞ p ( t ) d t = ∫ − ∞ x p ( t a ) d t a = 1 a ∫ − ∞ x p ( t a ) d t \begin{aligned}Pr(aX \le x) &amp;= Pr(X \le \frac{x}{a}) = \int_{-\infty}^{ } p(t) dt \\ &amp;= \int_{-\infty}^{ x} p\left(\frac{t}{a}\right) d\frac{t}{a} = \frac{1}{a} \int_{-\infty}^x p\left(\frac{t}{a}\right) dt \end{aligned} Pr(aXx)=Pr(Xax)=p(t)dt=xp(at)dat=a1xp(at)dt

做傅里叶变换 F ( p n ( x ) ) = n F ( p ∗ n ( n x ) ) = n ∗ 1 n F ( p ∗ n ) ( s n ) = ( F p ) n ( s n ) = ( F p ( s n ) ) n \begin{aligned}\mathcal{F}(p_n(x)) &amp;= \sqrt{n} \mathcal{F} \left(p^{*n}(\sqrt{n} x )\right)\\ &amp;= \sqrt{n} * \frac{1}{\sqrt{n} } \mathcal{F} \left(p^{*n}\right) \left(\frac{s}{ \sqrt{n}} \right) \\ &amp;= (\mathcal{F}p)^n \left(\frac{s}{ \sqrt{n}} \right)\\ &amp;= \left(\mathcal{F}p\left(\frac{s}{ \sqrt{n}} \right) \right)^n \end{aligned} F(pn(x))=n F(pn(n x))=n n 1F(pn)(n s)=(Fp)n(n s)=(Fp(n s))n
使用泰勒级数(展开) ( e x = 1 + x + x 2 2 + ⋯ &ThinSpace; ) (e^x = 1 +x + \frac{x^2}{2}+\cdots) (ex=1+x+2x2+)
F p ( s n ) = ∫ − ∞ ∞ e − 2 π i ( s / n ) x p ( x ) d x = ∫ − ∞ ∞ ( 1 − 2 π i s x n − 1 2 ( 2 π i s x n ) 2 + ⋯ &ThinSpace; ) p ( x ) d x = ∫ − ∞ ∞ p ( x ) d x ⎵ = 1 − 2 π i s n ∫ − ∞ ∞ x p ( x ) d x ⎵ = 0 − 2 π 2 s 2 n ∫ − ∞ ∞ x 2 p ( x ) d x ⎵ = 1 + ⋯ = 1 − 2 π 2 s 2 n + ε ≈ 1 − 2 π 2 s 2 n \begin{aligned}\mathcal{F}p\left(\frac{s}{ \sqrt{n}} \right) &amp;= \int_{-\infty}^\infty e^{-2\pi i (s/\sqrt{n})x} p(x) dx \\ &amp;= \int_{-\infty}^\infty \left(1-\frac{2\pi i sx}{\sqrt{n}} - \frac{1}{2} \left(\frac{2\pi i sx}{\sqrt{n}}\right)^2 + \cdots \right) p(x) dx\\ &amp;= \underbrace{\int_{-\infty}^\infty p(x) dx}_{=1} - \frac{2\pi i s}{\sqrt{n}}\underbrace{\int_{-\infty}^\infty xp(x) dx}_{=0} - \frac{2\pi^2 s^2}{n} \underbrace{ \int_{-\infty}^\infty x^2 p(x) dx}_{=1} + \cdots \\ &amp;=1 -\frac{2\pi^2 s^2}{n}+ \varepsilon \approx 1 -\frac{2\pi^2 s^2}{n} \end{aligned} Fp(n s)=e2πi(s/n )xp(x)dx=(1n 2πisx21(n 2πisx)2+)p(x)dx==1 p(x)dxn 2πis=0 xp(x)dxn2π2s2=1 x2p(x)dx+=1n2π2s2+ε1n2π2s2
所以
( F p ( s n ) ) n ≈ ( 1 − 2 π 2 s 2 n ) n \left(\mathcal{F}p\left(\frac{s}{ \sqrt{n}} \right) \right)^n \approx \left(1 -\frac{2\pi^2 s^2}{n} \right)^n (Fp(n s))n(1n2π2s2)n
n → + ∞ n\rightarrow +\infty n+, ( 1 − 2 π 2 s 2 n ) n ⟶ e − 2 π 2 s 2 \left(1 -\frac{2\pi^2 s^2}{n} \right)^n \longrightarrow e^{-2\pi^2s^2} (1n2π2s2)ne2π2s2
利用傅里叶反变换,饿到原分布密度为
p n ( x ) ≈ 1 2 π e − x 2 / 2 p_n(x) \approx \frac{1}{\sqrt{2\pi}} e^{-x^2/2} pn(x)2π 1ex2/2

讨论积分收敛问题

需要傅里叶变换的更严谨的定义才能处理一般信号。如果积分不收敛,怎么利用傅里叶变换
两种方式处理这种情况
1.一种是使用特定方法(ad hot)
2.重新研究基础,给出一个另外的定义
第一个例子: f ( t ) = Π ( t ) f(t) = \Pi(t) f(t)=Π(t)积分收敛可以进行傅里叶变换,然而问题出现在反变换上 F − 1 s i n c = Π \mathcal{F}^{-1} sinc = \Pi F1sinc=Π
F − 1 s i n c = ∫ − ∞ ∞ e 2 π i s t sin ⁡ π s π s d s = { 1 , ∣ s ∣ &lt; 1 2 0 , ∣ s ∣ &gt; 1 2 \mathcal{F}^{-1} sinc = \int_{-\infty}^\infty e^{2\pi i st } \frac{\sin \pi s}{\pi s} ds = \begin{cases}1,\quad &amp;|s| &lt; \frac{1}{2} \\ 0,\quad &amp;|s| &gt; \frac{1}{2} \end{cases} F1sinc=e2πistπssinπsds={1,0,s<21s>21
(无法用简单积分算出,需要用一些技巧)
在边界上即不连续点上 s = ± 1 2 s=\pm \frac{1}{2} s=±21有些问题,收敛于 1 2 \frac{1}{2} 21而不是0或者1
第二个例子中, f ( t ) = 1 f(t) = 1 f(t)=1,傅里叶积分是无意义的
∫ − ∞ ∞ e − 2 π i s t d t = 1 − 2 π i s e − 2 π i s t ∣ − ∞ ∞ = 0 \int_{-\infty}^\infty e^{-2\pi i st } dt = \frac{1}{-2\pi i s} e^{-2\pi i st } \bigg|_{-\infty}^\infty = 0 e2πistdt=2πis1e2πist=0
例子3: f ( t ) = sin ⁡ ( 2 π t ) , g ( t ) = cos ⁡ ( 2 π t ) f(t) = \sin(2\pi t),g(t) =\cos(2\pi t) f(t)=sin(2πt),g(t)=cos(2πt)

∫ − ∞ ∞ e − 2 π i s t sin ⁡ ( 2 π t ) d t \int_{-\infty}^\infty e^{-2\pi i st } \sin(2\pi t) dt e2πistsin(2πt)dt
是无法收敛的。对于等等这些情况,我们必须重新定义收敛的问题
怎样选取基本现象来啊研究其他一切现象
1940年代解决了这个问题。退一步,最好的情形是什么(定义为 s s s,Schwarz)
我们需要两个性质:
1.如果 f ∈ s f \in s fs,那么 F ∈ s \mathcal{F} \in s Fs
2.傅里叶由方程定义
F F − 1 f = f \mathcal{F}\mathcal{F}^{-1}f = f FF1f=f
更进一步的性质(Parseval等式Rayleigh 等式)
∫ − ∞ ∞ ∣ g ( s ) ∣ 2 d s = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t \int_{-\infty}^\infty |g(s) |^2 ds = \int_{-\infty}^\infty |f(t)|^2 dt g(s)2ds=f(t)2dt
怎样定义 s s s(Laurent Schwartz找到了这个类):s指的就是这类速降函数
{ f ( x ) 为 光 滑 函 数 对 任 意 m , n ≥ 0 , 当 x → ± ∞ , ∣ x ∣ n ∣ d m d x m f ( x ) ∣ → 0 \begin{cases}f(x) 为光滑函数\\ 对任意m,n\ge 0,当x \rightarrow \pm \infty,|x|^n |\frac{d^m}{dx^m}f(x) | \rightarrow 0 \end{cases} {f(x)m,n0,x±,xndxmdmf(x)0
即递降速度非常快,比 x n x^n xn快. 存在这样的函数吗
{ f ( x ) = e − π x 2 就 是 这 样 的 函 数 在 一 个 区 间 外 全 为 0 的 光 滑 函 数 ( 紧 支 集 光 滑 函 数 ) \begin{cases}f(x) = e^{-\pi x^2}就是这样的函数\\在一个区间外全为0的光滑函数(紧支集光滑函数) \end{cases} {f(x)=eπx20
这是从导数定理中来的
F ( f ( m ) ) ( s ) = ( 2 π i s ) m F f ( s ) \mathcal{F}(f^{(m)})(s) = (2\pi i s)^m \mathcal{F}f(s) F(f(m))(s)=(2πis)mFf(s)
这表明可微性和递降速率的关系
Parseval等式适用于s函数,适用于不涉及收敛问题的函数
∫ − ∞ ∞ ∣ F ( f ) ( s ) ∣ 2 d s = ∫ − ∞ ∞ ∣ f ( t ) ∣ 2 d t \int_{-\infty}^\infty |\mathcal{F}(f)(s) |^2 ds = \int_{-\infty}^\infty |f(t)|^2 dt F(f)(s)2ds=f(t)2dt
下面证明一个更一般的等式
∫ − ∞ ∞ F f ( s ) F g ( s ) ‾ d s = ∫ − ∞ ∞ f ( t ) g ( t ) ‾ d t \int_{-\infty}^\infty \mathcal{F}f(s) \overline{\mathcal{F}g(s)} ds = \int_{-\infty}^\infty f(t) \overline{g(t)} dt Ff(s)Fg(s)ds=f(t)g(t)dt
g ( t ) = ∫ − ∞ ∞ e 2 π i s t F g ( s ) d s g(t) = \int_{-\infty}^\infty e^{2\pi i st} \mathcal{F}g(s) ds g(t)=e2πistFg(s)ds,即 g ( t ) = F − 1 F g g(t)=\mathcal{F}^{-1}\mathcal{F}g g(t)=F1Fg
两边取共轭,将共轭算子放进积分中
g ( t ) ‾ = ∫ − ∞ ∞ e − 2 π i s t F g ( s ) ‾ d s \overline{g(t)} = \int_{-\infty}^\infty e^{-2\pi i st} \overline{\mathcal{F}g(s)} ds g(t)=e2πistFg(s)ds

∫ − ∞ ∞ f ( x ) g ( t ) ‾ d t = ∫ − ∞ ∞ f ( t ) ( ∫ − ∞ ∞ e − 2 π i s t F g ( s ) ‾ d s ) d t = ∫ − ∞ ∞ F g ( s ) ‾ ( ∫ − ∞ ∞ f ( t ) e − 2 π i s t d t ) d s = ∫ − ∞ ∞ F f ( s ) F g ( s ) ‾ d s \begin{aligned}\int_{-\infty}^\infty f(x)\overline{g(t)}dt &amp;= \int_{-\infty}^\infty f(t) \left( \int_{-\infty}^\infty e^{-2\pi i st} \overline{\mathcal{F}g(s)} ds\right)dt \\ &amp;=\int_{-\infty}^\infty \overline{\mathcal{F}g(s)} \left( \int_{-\infty}^\infty f(t) e^{-2\pi i st} dt\right)ds\\ &amp;= \int_{-\infty}^\infty \mathcal{F}f(s) \overline{\mathcal{F}g(s)} ds \end{aligned} f(x)g(t)dt=f(t)(e2πistFg(s)ds)dt=Fg(s)(f(t)e2πistdt)ds=Ff(s)Fg(s)ds

傅里叶变换扩展(重新定义傅里叶变换,广义傅里叶变换)

傅里叶变换的最佳集合,速降函数集合s
为什么这个对于傅里叶变幻时最佳的
Π ∉ s , Λ , sin ⁡ , cos ⁡ , s i n c ∉ s , 常 数 c ∉ s \Pi \notin s,\Lambda,\sin,\cos,sinc \notin s,常数c \notin s Π/s,Λ,sin,cos,sinc/s,c/s,许多常见的函数都不属于 s s s,怎么办,必须采取一条特别的路,那就是广义函数(也称为分布)
脉冲函数 δ \delta δ(单独考虑是没有意义的)
通常定义 δ \delta δ
δ ( 0 ) = 0 , x ≠ 0 δ ( 0 ) = ∞ &ThinSpace;&ThinSpace;&ThinSpace; \delta(0) = 0,x \ne 0\\ \delta(0) = \infty \quad\quad\,\,\, δ(0)=0,x̸=0δ(0)=
∫ − ∞ ∞ δ ( x ) d x = 1 \int_{-\infty}^\infty \delta(x) dx = 1 δ(x)dx=1
∫ − ∞ ∞ δ ( 0 ) φ ( x ) d x = φ ( 0 ) \int_{-\infty}^\infty \delta(0) \varphi(x) dx = \varphi(0) δ(0)φ(x)dx=φ(0)
上面的定义完全是垃圾。
δ \delta δ函数是一个只关注一点的函数,考虑经典的那些函数,当他们变得越来越窄,取极限的时候。eg.:考虑一个长方形函数,变窄,变高,积分不变
∫ − ∞ ∞ 1 ε Π ε ( x ) φ ( x ) d x = 1 ε ∫ − ε 2 ε 2 φ ( x ) d x = 1 ε ∫ − ε 2 ε 2 φ ( 0 ) + φ ′ ( c ) x + φ ′ ′ ( c ) 2 x 2 + ⋯ d x = φ ( 0 ) + O ( ε ) ⟶ φ ( 0 ) \begin{aligned}\int_{-\infty}^\infty \frac{1}{\varepsilon} \Pi_\varepsilon(x) \varphi(x) dx &amp;= \frac{1}{\varepsilon} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} \varphi(x) dx\\ &amp;= \frac{1}{\varepsilon} \int_{-\frac{\varepsilon}{2}}^{\frac{\varepsilon}{2}} \varphi(0) + \varphi&#x27;(c) x + \frac{\varphi&#x27;&#x27;(c)}{2}x^2 +\cdots dx \\ &amp;=\varphi(0) + O(\varepsilon) \longrightarrow \varphi(0) \end{aligned} ε1Πε(x)φ(x)dx=ε12ε2εφ(x)dx=ε12ε2εφ(0)+φ(c)x+2φ(c)x2+dx=φ(0)+O(ε)φ(0)

lim ⁡ ε → 0 ∫ − ∞ ∞ 1 ε Π ε ( x ) φ ( x ) d x = φ ( 0 ) \lim_{\varepsilon \rightarrow 0}\int_{-\infty}^\infty \frac{1}{\varepsilon} \Pi_\varepsilon(x) \varphi(x) dx=\varphi(0) ε0limε1Πε(x)φ(x)dx=φ(0)
单独考虑 lim ⁡ ε → 0 1 ε Π ε ( x ) \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \Pi_\varepsilon(x) limε0ε1Πε(x)是没有意义的,而是和其他函数成对出现才有意义,这才是 δ \delta δ函数通常出现的形式, δ \delta δ单独出现没有意义。把视角放在结果而不是过程
定义:1)从分布测试函数 φ \varphi φ开始(那些最优的函数)
2)和测试函数相关的叫广义函数或者分布的集合,一个分布较 T T T,是一个作用于测试函数的线性泛函. T ( φ ) T(\varphi) T(φ)是一个数, T ( a φ 1 + b φ 2 ) = a T ( φ 1 ) + b T ( φ 2 ) T(a\varphi_1 + b\varphi_2)= aT(\varphi_1) + bT(\varphi_2) T(aφ1+bφ2)=aT(φ1)+bT(φ2)
3)如果 ϕ n → φ \phi_n \rightarrow \varphi ϕnφ(序列趋近于 φ \varphi φ),那么 T ( φ n ) → T ( φ ) T(\varphi_n) \rightarrow T(\varphi) T(φn)T(φ)
一个分布于一个测试函数配对,符号 &lt; T , φ &gt; &lt;T,\varphi&gt; <T,φ>
重新定义 δ \delta δ,通过 &lt; δ , φ &gt; = φ ( 0 ) &lt;\delta,\varphi&gt; = \varphi(0) <δ,φ>=φ(0),显然是线性的,而且 ϕ n → φ ⇒ ϕ n ( 0 ) → φ ( 0 ) \phi_n \rightarrow \varphi \Rightarrow \phi_n(0) \rightarrow \varphi(0) ϕnφϕn(0)φ(0)这才是 δ \delta δ的定义
定义位移 δ \delta δ函数, δ a \delta_a δa为一个分布 &lt; δ a , φ &gt; = φ ( a ) &lt;\delta_a,\varphi&gt;=\varphi(a) <δa,φ>=φ(a),并满足1),2),3)
怎样才能是的那些不符合测试函数的函数回到视野中来(傅里叶变换变得有意义)
通过一种特别的方式合理化
eg.:怎样将常函数看做一个分布,怎样定义匹配 1 1 1 φ \varphi φ(通过积分实现)
&lt; 1 , φ &gt; = ∫ − ∞ ∞ 1 φ ( x ) d x = ∫ − ∞ ∞ φ ( x ) d x &lt;1,\varphi&gt; = \int_{-\infty}^\infty 1\varphi(x) dx = \int_{-\infty}^{\infty} \varphi(x) dx <1,φ>=1φ(x)dx=φ(x)dx
同样对于矩形函数
&lt; Π , φ &gt; = ∫ − ∞ ∞ Π ( x ) φ ( x ) d x &lt;\Pi,\varphi&gt; = \int_{-\infty}^\infty \Pi(x) \varphi(x) dx <Π,φ>=Π(x)φ(x)dx
三角函数
&lt; sin ⁡ ( 2 π x ) , φ &gt; = ∫ − ∞ ∞ sin ⁡ ( 2 π x ) φ ( x ) d x &lt;\sin(2\pi x),\varphi&gt; = \int_{-\infty}^\infty \sin(2\pi x) \varphi(x) dx <sin(2πx),φ>=sin(2πx)φ(x)dx
对于大部分函数,将 f ( x ) f(x) f(x)看成分布, &lt; f , φ &gt; = ∫ f ( x ) φ ( x ) d x &lt;f,\varphi&gt; = \int f(x) \varphi(x) dx <f,φ>=f(x)φ(x)dx这包括基本的所有函。
下面正式介绍广义函数(分布)傅里叶变换
测试集合(速降函数集合) T \mathcal{T} T,和上面那样定义 &lt; T , φ &gt; &lt;T,\varphi&gt; <T,φ> ϕ n → φ ⇒ T ( φ n ) → T ( φ ) \phi_n \rightarrow \varphi \Rightarrow T(\varphi_n) \rightarrow T(\varphi) ϕnφT(φn)T(φ)
比较难的是定义函数的收敛性(这里不讨论)
分布的集合是一系列测试函数的对偶空间(dual space)
定义 &lt; f , φ &gt; = ∫ − ∞ ∞ f ( x ) φ ( x ) d x &lt;f,\varphi&gt; = \int_{-\infty}^\infty f(x) \varphi(x) dx <f,φ>=f(x)φ(x)dx(如果积分都收敛),大部分的函数都是分布
&lt; e 2 π i a x , φ &gt; = ∫ − ∞ ∞ e 2 π i a x φ ( x ) d x &lt;e^{2\pi i ax}, \varphi&gt; = \int_{-\infty}^\infty e^{2\pi i ax}\varphi(x) dx <e2πiax,φ>=e2πiaxφ(x)dx是有意义的
把测试函数看做 s s s,那么
① φ ∈ s , F φ ∈ s , F − 1 φ ∈ s ①\varphi \in s, \mathcal{F}\varphi \in s, \mathcal{F}^{-1} \varphi \in s φs,Fφs,F1φs
② F F − 1 φ = φ F − 1 F = φ ② \mathcal{F} \mathcal{F}^{-1} \varphi= \varphi\\ \mathcal{F}^{-1} \mathcal{F} = \varphi FF1φ=φF1F=φ
与之对应的分布,通常也称为缓增广义函数
如果 T T T是一个缓增广义函数,则通过傅里叶变换,变成另一个缓增广义函数
我们现在需要定义 &lt; F T , φ &gt; &lt;\mathcal{F} T,\varphi&gt; <FT,φ>
假设,所有性质都很好地满足,则
&lt; F T , f &gt; = ∫ − ∞ ∞ F T ( x ) f ( x ) d x = ∫ − ∞ ∞ ∫ − ∞ ∞ e − 2 π i x y f ( x ) d x &ThinSpace; T ( y ) d y = ∫ − ∞ ∞ F f ( y ) T ( y ) d y = &lt; T , F f &gt; \begin{aligned} &lt;\mathcal{F} T,f&gt; &amp;= \int_{-\infty}^\infty \mathcal{F}T(x) f(x) dx \\ &amp;=\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-2\pi i xy} f(x) dx\, T(y) dy\\ &amp;= \int_{-\infty}^\infty \mathcal{F}f(y) T(y) dy\\ &amp;= &lt;T,\mathcal{F}f&gt; \end{aligned} <FT,f>=FT(x)f(x)dx=e2πixyf(x)dxT(y)dy=Ff(y)T(y)dy=<T,Ff>
所以定义 &lt; F T , φ &gt; = &lt; T , F φ &gt; &lt;\mathcal{F} T,\varphi&gt; = &lt;T,\mathcal{F} \varphi&gt; <FT,φ>=<T,Fφ>
同样定义 &lt; F − 1 T , φ &gt; = &lt; T , F − 1 φ &gt; &lt;\mathcal{F}^{-1}T,\varphi&gt; = &lt;T,\mathcal{F}^{-1}\varphi&gt; <F1T,φ>=<T,F1φ>
容易证明这样定义是合理的,即 &lt; F F − 1 T , φ &gt; = &lt; T , φ &gt; &lt;\mathcal{F}\mathcal{F}^{-1}T,\varphi&gt; = &lt;T,\varphi&gt; <FF1T,φ>=<T,φ>, &lt; F − 1 F T , φ &gt; = &lt; T , φ &gt; &lt;\mathcal{F}^{-1}\mathcal{F}T,\varphi&gt; = &lt;T,\varphi&gt; <F1FT,φ>=<T,φ>

根据定义
&lt; F δ , φ &gt; = &lt; δ , F φ &gt; = F φ ( 0 ) = ∫ − ∞ ∞ 1 φ ( x ) d x = &lt; 1 , φ &gt; &lt;\mathcal{F}\delta, \varphi&gt; = &lt;\delta, \mathcal{F} \varphi&gt; = \mathcal{F} \varphi(0) = \int_{-\infty}^\infty 1 \varphi(x) dx = &lt;1,\varphi&gt; <Fδ,φ>=<δ,Fφ>=Fφ(0)=1φ(x)dx=<1,φ>
故(频域分散,时域聚集)
F δ = 1 \mathcal{F} \delta = 1 Fδ=1
同样
F δ a = e − 2 π i a x \mathcal{F} \delta_a = e^{-2\pi i a x} Fδa=e2πiax
F e − 2 π i a x = δ a \mathcal{F} e^{-2\pi i a x} = \delta_a Fe2πiax=δa

而由 cos ⁡ ( 2 π a x ) = 1 2 ( e 2 π i a x + e − 2 π i a x ) \cos(2\pi a x ) = \frac{1}{2}(e^{2\pi i a x}+e^{-2\pi i a x}) cos(2πax)=21(e2πiax+e2πiax),得
F cos ⁡ ( 2 π a x ) = 1 2 ( δ a + δ − a ) \mathcal{F} \cos(2\pi a x ) = \frac{1}{2} (\delta_a + \delta_{-a}) Fcos(2πax)=21(δa+δa)
必须证明这和原来的是不矛盾的

分布的导数和卷积

&lt; T ′ , φ &gt; = ? &lt;T&#x27;,\varphi&gt;=? <T,φ>=?
如果 T T T由一个函数给出
&lt; T ′ , φ &gt; = ∫ − ∞ ∞ T ′ ( x ) φ ( x ) d x = [ T ( x ) φ ( x ) ] ∣ − ∞ ∞ − ∫ − ∞ ∞ T ( x ) φ ′ ( x ) d x = − ∫ − ∞ ∞ T ( x ) φ ′ ( x ) d x = − &lt; T , φ ′ &gt; \begin{aligned}&lt;T&#x27;,\varphi&gt; &amp;= \int_{-\infty}^\infty T&#x27;(x) \varphi(x) dx \\ &amp;= [T(x)\varphi(x)] \bigg|_{-\infty}^\infty - \int_{-\infty}^\infty T(x) \varphi&#x27;(x)dx \\ &amp;= - \int_{-\infty}^\infty T(x) \varphi&#x27;(x)dx \\ &amp;= -&lt;T,\varphi&#x27;&gt; \end{aligned} <T,φ>=T(x)φ(x)dx=[T(x)φ(x)]T(x)φ(x)dx=T(x)φ(x)dx=<T,φ>
把它作为定义
&lt; T ′ , φ &gt; = − &lt; T , φ ′ &gt; &lt;T&#x27;,\varphi&gt; = -&lt;T,\varphi&#x27;&gt; <T,φ>=<T,φ>

Example: (跳跃函数Heaviside函数)
u ( x ) = { 1 , &ThinSpace; x &gt; 0 0 , &ThinSpace; x ≤ 0 u(x) = \begin{cases} 1, \, &amp;x&gt;0 \\ 0,\, &amp; x \le 0 \end{cases} u(x)={1,0,x>0x0
&lt; u ′ , φ &gt; = − &lt; u , φ ′ &gt; = − ∫ − ∞ ∞ u x ( x ) φ ′ ( x ) d x = − ∫ 0 ∞ φ ′ ( x ) d x = − φ ( x ) ∣ 0 ∞ = &lt; δ , φ &gt; \begin{aligned} &lt;u&#x27;,\varphi&gt; &amp;= -&lt;u,\varphi&#x27;&gt; = -\int_{-\infty}^\infty ux(x) \varphi&#x27;(x) dx \\ &amp;=- \int_0^\infty \varphi&#x27;(x) dx = - \varphi(x) \bigg|_0^\infty = &lt;\delta,\varphi&gt; \end{aligned} <u,φ>=<u,φ>=ux(x)φ(x)dx=0φ(x)dx=φ(x)0=<δ,φ>
所以 u ′ = δ u&#x27; = \delta u=δ
同理得到
s i g n &ThinSpace; x = { 1 , &ThinSpace; x &gt; 0 0 , &ThinSpace; x = 0 − 1 , &ThinSpace; x &lt; 0 sign \,x = \begin{cases}1,\, &amp; x&gt; 0\\ 0,\, &amp;x =0 \\-1,\, &amp; x&lt;0\end{cases} signx=1,0,1,x>0x=0x<0
s i g n ′ = 2 δ sign&#x27; = 2\delta sign=2δ
傅里叶变换的导数和导数的傅里叶变换
( F T ) ′ = F ( − 2 π i t T ) (\mathcal{F}T)&#x27; = \mathcal{F}(-2\pi i t T) (FT)=F(2πitT)
F ( T ′ ) = 2 π i s F T \mathcal{F}(T&#x27;) = 2\pi i s \mathcal{F} T F(T)=2πisFT
&lt; ( F T ) ′ , φ &gt; = − &lt; F T , φ ′ &gt; = − &lt; T , F φ ′ &gt; = − &lt; T , 2 π i t F φ &gt; = &lt; − 2 π i t T , F φ &gt; = &lt; F ( − 2 π i t T ) , φ &gt; \begin{aligned}&lt;(\mathcal{F}T)&#x27;,\varphi&gt; &amp;= -&lt;\mathcal{F}T,\varphi&#x27;&gt; = -&lt;T,\mathcal{F} \varphi&#x27;&gt;\\ &amp;= -&lt;T,2\pi i t \mathcal{F} \varphi&gt; = &lt;-2\pi i t T ,\mathcal{F} \varphi&gt; = &lt;\mathcal{F}( -2\pi i t T),\varphi&gt; \end{aligned} <(FT),φ>=<FT,φ>=<T,Fφ>=<T,2πitFφ>=<2πitT,Fφ>=<F(2πitT),φ>
&lt; F ( T ′ ) , φ &gt; = &lt; T ′ , F φ &gt; = − &lt; T , ( F φ ) ′ &gt; = − &lt; T , F ( − 2 π i s φ ) &gt; = &lt; 2 π i s F T , φ &gt; \begin{aligned} &lt;\mathcal{F}(T&#x27;),\varphi&gt; &amp;= &lt;T&#x27;, \mathcal{F} \varphi&gt; = -&lt;T,(\mathcal{F} \varphi)&#x27;&gt;\\ &amp;=-&lt;T,\mathcal{F}(-2\pi i s \varphi)&gt; = &lt;2\pi i s\mathcal{F} T, \varphi &gt; \end{aligned} <F(T),φ>=<T,Fφ>=<T,(Fφ)>=<T,F(2πisφ)>=<2πisFT,φ>

利用这个来找 s g n &ThinSpace; x sgn\,x sgnx的傅里叶变换,由于 s g n ′ = 2 δ sgn&#x27; =2 \delta sgn=2δ
F ( s g n ′ ) = 2 δ = 2 \mathcal{F}(sgn&#x27;) = \mathcal{2\delta} = 2 F(sgn)=2δ=2
另外有
F ( s g n ′ ) = 2 π i s F ( s g n ) \mathcal{F}(sgn&#x27;) = 2\pi i s \mathcal{F}(sgn) F(sgn)=2πisF(sgn)

F ( s g n ) = 2 2 π i s = 1 π i s \mathcal{F}(sgn) = \frac{2}{2\pi i s } = \frac{1}{\pi i s } F(sgn)=2πis2=πis1

需要注意的是,如果 S , T S,T S,T都是分布,那么 S T ST ST是没有定义的。特殊情况是当 f f f为函数(满足一定条件,使得 f φ ∈ s f\varphi \in s fφs), &lt; f T , φ &gt; = &lt; T , f φ &gt; &lt;fT,\varphi&gt; = &lt;T,f\varphi&gt; <fT,φ>=<T,fφ>

例子
&lt; f δ , φ &gt; = &lt; δ , f φ &gt; = f ( 0 ) φ ( 0 ) = &lt; f ( 0 ) δ , φ &gt; &lt;f\delta,\varphi&gt; = &lt;\delta,f\varphi&gt; = f(0)\varphi(0) = &lt;f(0)\delta,\varphi&gt; <fδ,φ>=<δ,fφ>=f(0)φ(0)=<f(0)δ,φ>

f δ = f ( 0 ) δ f\delta = f(0) \delta fδ=f(0)δ
同理
f δ a = f ( a ) δ a f\delta_a = f(a) \delta_a fδa=f(a)δa
这是 δ \delta δ的采样性质

如果 T , S T,S T,S是分布,如何定义卷积(必须对分布进行限制,不知所有都有定义)
以下许多情况下是可以的
f ∗ T f*T fT,当 f f f作为一个函数,并且卷积定理成立
F ( f ∗ T ) = ( F f ) ( F T ) \mathcal{F}(f*T) = (\mathcal{F}f)(\mathcal{F}T) F(fT)=(Ff)(FT)
一个特例,当 T = δ T=\delta T=δ(根据卷积定理和前面的结果有)
f ∗ δ = f f* \delta = f fδ=f
( f ∗ δ a ) ( x ) = f ( x − a ) (f* \delta_a)(x) = f(x - a) (fδa)(x)=f(xa)
δ \delta δ的缩放性质, δ ( a x ) \delta(ax) δ(ax)定义为?
a &gt; 0 a&gt;0 a>0 &lt; δ ( a x ) , φ ( x ) &gt; = ∫ − ∞ ∞ δ ( a x ) φ ( x ) d x = 1 a ∫ − ∞ ∞ δ ( u ) φ ( u a ) d u = &lt; δ , 1 a φ ( x a ) &gt; = 1 a φ ( 0 ) = 1 a &lt; δ , φ &gt; \begin{aligned} &lt;\delta(ax) ,\varphi(x)&gt; &amp;= \int_{-\infty}^\infty \delta(ax) \varphi(x) dx = \frac{1}{a} \int_{-\infty}^\infty \delta(u) \varphi(\frac{u}{a}) du\\ &amp;=&lt;\delta,\frac{1}{a} \varphi(\frac{x}{a})&gt; = \frac{1}{a} \varphi(0) = \frac{1}{a}&lt;\delta,\varphi&gt; \end{aligned} <δ(ax),φ(x)>=δ(ax)φ(x)dx=a1δ(u)φ(au)du=<δ,a1φ(ax)>=a1φ(0)=a1<δ,φ>
a &lt; 0 a&lt;0 a<0同理 &lt; δ ( a x ) , φ ( x ) &gt; = − 1 a &lt; δ , φ &gt; &lt;\delta(ax) ,\varphi(x)&gt; = - \frac{1}{a}&lt;\delta,\varphi&gt; <δ(ax),φ(x)>=a1<δ,φ>
所以 &lt; δ ( a x ) , φ ( x ) &gt; = 1 ∣ a ∣ &lt; δ , φ &gt; &lt;\delta(ax) ,\varphi(x)&gt; = \frac{1}{|a|}&lt;\delta,\varphi&gt; <δ(ax),φ(x)>=a1<δ,φ>

傅里叶变换与衍射(diffraction)

衍射是光的一种现象
透过过光阑或者小孔。光来自远处光源,光偷过光屏(光屏上有一些小孔),在远处有一接受屏,可以看到衍射现象
假设光是震荡的电磁场,并假设为单色光,衍射图形和光接收屏的位置有关
两种衍射 { 近 场 衍 射 : 菲 涅 尔 衍 射 远 场 衍 射 : 夫 琅 禾 费 衍 射 \begin{cases}近场衍射:菲涅尔衍射\\ 远场衍射:夫琅禾费衍射 \end{cases} {
下面介绍夫琅禾费衍射
在这里插入图片描述
光波可以表示为 E e 2 π i ν t Ee^{2\pi i \nu t} Ee2πiνt, E E E为衍射屏上(光栅)的电场强度 ν \nu ν为频率
假设 E E E为常数,接受屏上一点 p p p的电场强度怎么表示?不同光沿不同的路径到达同一点 p p p,会产生怎样的叠加
波阵面上的各点,可以看做新的光源(惠更斯Huygens原理)
在这里插入图片描述
如图, x x x点处的场强大小为 d x dx dx处的场强 E 0 e 2 π i ν t d x E_0 e^{2\pi i \nu t}dx E0e2πiνtdx(一点的场强)
x x x点的光,到 p p p(经过距离为 r r r),相位改变多少(经过多少周期)
λ \lambda λ为波长,那么经过了 r λ \frac{r}{\lambda} λr个周期,改变相位为 2 π r λ \frac{2\pi r}{\lambda} λ2πr,所以 x x x点的电磁场到 p p p点处的电场为 d E = E 0 e 2 π i ν t e − 2 π i r / λ d x dE = E_0 e^{2\pi i \nu t} e^{-2\pi i r / \lambda} dx dE=E0e2πiνte2πir/λdx
总电场为
E = ∫ E 0 e 2 π i ν t e − 2 π i r / λ d x = E 0 e 2 π i ν t ∫ e − 2 π i r / λ d x E = \int E_0 e^{2\pi i \nu t} e^{-2\pi i r / \lambda} dx = E_0 e^{2\pi i \nu t} \int e^{-2\pi i r / \lambda} dx E=E0e2πiνte2πir/λdx=E0e2πiνte2πir/λdx
实际上看到的场强是 ∣ E ∣ |E| E
引入Fraunhofer近似,假设 r ≫ x r \gg x rx
r 0 − x sin ⁡ θ ≈ r r_0 - x \sin \theta \approx r r0xsinθr
代入积分得到
E = E 0 e 2 π i ν t ∫ e − 2 π i ( r 0 − x sin ⁡ θ ) / λ d x = E 0 e 2 π i ν t e − 2 π i r 0 / λ ∫ e 2 π i x sin ⁡ θ / λ d x \begin{aligned} E &amp;= E_0 e^{2\pi i \nu t} \int e^{-2\pi i (r_0 - x\sin \theta) / \lambda} dx\\ &amp;= E_0 e^{2\pi i \nu t} e^{-2\pi i r_0 /\lambda} \int e^{2\pi i x \sin \theta / \lambda}dx\end{aligned} E=E0e2πiνte2πi(r0xsinθ)/λdx=E0e2πiνte2πir0/λe2πixsinθ/λdx
p = sin ⁡ θ / λ p=\sin\theta / \lambda p=sinθ/λ,积分变为
E 0 e 2 π i ν t e − 2 π i r 0 / λ ∫ a p e r t u r e e 2 π i p x d x E_0 e^{2\pi i \nu t } e^{-2\pi i r_0 /\lambda} \int_{aperture} e^{2\pi i px }dx E0e2πiνte2πir0/λaperturee2πipxdx
引入孔径函数 A ( x ) = { 1 , &ThinSpace; x ∈ a p e r t u r e 0 , &ThinSpace; x ∉ a p e r t u r e A(x) = \begin{cases}1,\, x \in aperture \\ 0,\, x\notin aperture \end{cases} A(x)={1,xaperture0,x/aperture
后边的积分可以写成 ∫ − ∞ ∞ e 2 π i x p A ( x ) d x = F − 1 A ( p ) \int_{-\infty}^\infty e^{2\pi i xp}A(x) dx = \mathcal{F}^{-1} A(p) e2πixpA(x)dx=F1A(p)
在物理学上记为 F A ( p ) \mathcal{F} A(p) FA(p)而不是 F − 1 A ( p ) \mathcal{F}^{-1} A(p) F1A(p)(因为物理学上傅里叶和这里的相反)
结果就是说,远场衍射电场强度是孔径函数傅里叶变换的幅值

Example
a slit(狭缝),宽度为 a a a写成 Π a ( x ) \Pi_a(x) Πa(x)
接受屏的光强为 a &ThinSpace; s i n c ( a sin ⁡ θ λ ) = a &ThinSpace; s i n c ( a p ) a \,sinc \left(\frac{a\sin \theta}{\lambda}\right)=a \,sinc(ap) asinc(λasinθ)=asinc(ap) p = sin ⁡ θ λ p = \frac{\sin \theta}{\lambda} p=λsinθ
如果光阑尾一个点光源,则狭缝变为 δ \delta δ,接收屏是均匀亮度。这是对 δ \delta δ傅里叶变换的物理实验解释

另一个实验室杨氏双缝干涉实验(Young’s double-slit experiment)
孔径函数为 A ( x ) = Π a ( x − b 2 ) + Π a ( x + b 2 ) A(x) = \Pi_a\left(x - \frac{b}{2}\right) + \Pi_a\left(x + \frac{b}{2}\right) A(x=Πa(x2b)+Πa(x+2b)
其傅里叶变换为
a ( s i n c ( a p ) ) 2 cos ⁡ ( π b p ) , p = sin ⁡ θ λ a\left(sinc(ap) \right) 2\cos(\pi b p ),p = \frac{\sin\theta}{\lambda} a(sinc(ap))2cos(πbp),p=λsinθ

晶体成像

X射线1895年由伦琴(Roentgen)发现,它是波吗? 如果是,那么波长为10.8cm,太短,不好测量
晶体结构有原子结构组成,排列成晶格,劳厄(Max Von Laue)1912年做了一系列实验
他假设
1)X射线为波,可以进行衍射
2)晶体具有周期原子结构
3)原子间距和X射线波长相比拟

考虑一维的情况(一维晶体间距为p)
在这里插入图片描述
要研究晶体的电子云密度,晶体的电子云密度为单个原子电子密度的周期形式
ρ p ( x ) = ∑ k = − ∞ ∞ ρ ( x − k p ) \rho_p(x) = \sum_{k = -\infty}^\infty \rho(x - kp) ρp(x)=k=ρ(xkp)
晶体的衍射条纹是由 F ρ p \mathcal{F} \rho_p Fρp决定的,将 ρ p ( x ) \rho_p(x) ρp(x)写成卷积
ρ ( x − k p ) = ρ ( x ) ∗ δ ( x − k p ) \rho(x - kp) = \rho(x) * \delta(x - kp) ρ(xkp)=ρ(x)δ(xkp)

ρ p ( x ) = ∑ k = − ∞ ∞ ρ ( x ) ∗ δ ( x − k p ) = ρ ( x ) ∗ ∑ k = − ∞ ∞ δ ( x − k p ) \rho_p(x) = \sum_{k = -\infty}^\infty \rho(x) * \delta(x - kp)\\ =\rho(x) *\sum_{k = -\infty}^\infty \delta(x - kp) ρp(x)=k=ρ(x)δ(xkp)=ρ(x)k=δ(xkp)
使用(间隔为 p p p Ш Ш Ш(Shah)函数) Ш p ( x ) = ∑ k = − ∞ ∞ δ ( x − k p ) Ш_p(x) = \sum_{k = -\infty}^\infty \delta(x - kp) Шp(x)=k=δ(xkp)
在这里插入图片描述

ρ p ( x ) = ρ ( x ) ∗ Ш p ( x ) \rho_p (x) = \rho(x) *Ш_p(x) ρp(x)=ρ(x)Шp(x)
F ρ p = ( F p ) ( F Ш p ) \mathcal{F} \rho_p = (\mathcal{F} p)(\mathcal{F} Ш_p) Fρp=(Fp)(FШp)
问题是 F Ш p = ? \mathcal{F} Ш_p = ? FШp=?

p = 1 p=1 p=1 Ш ( x ) = ∑ k = − ∞ ∞ δ ( x − k ) Ш(x) = \sum_{k = -\infty}^\infty \delta(x - k) Ш(x)=k=δ(xk),这是一个有意义的分布,为什么
因为 &lt; Ш , φ &gt; = ∑ k = − ∞ ∞ φ ( k ) &lt;Ш,\varphi&gt; = \sum_{k = -\infty}^\infty\varphi(k) <Ш,φ>=k=φ(k)收敛,所以 F Ш \mathcal{F}Ш FШ也有意义
F Ш = ∑ k = − ∞ ∞ F ( δ ( x − k ) ) = ∑ k = − ∞ ∞ e − 2 π i k s \mathcal{F} Ш = \sum_{k = -\infty}^\infty \mathcal{F} (\delta( x - k)) = \sum_{k = -\infty}^\infty e^{-2\pi i ks} FШ=k=F(δ(xk))=k=e2πiks
不符合一般的收敛,但对于分布仍然有意义

&lt; F Ш , φ &gt; = &lt; Ш , F φ &gt; = ∑ k = − ∞ ∞ F φ ( k ) &lt;\mathcal{F}Ш,\varphi&gt; = &lt;Ш,\mathcal{F}\varphi&gt; = \sum_{k = -\infty}^\infty\mathcal{F} \varphi(k) <FШ,φ>=<Ш,Fφ>=k=Fφ(k)
引入泊松(poison)求和公式(后面证明)。 φ \varphi φ为速将函数,则
∑ k = − ∞ ∞ φ ( k ) = ∑ k = − ∞ ∞ F φ ( k ) \sum_{k = -\infty}^\infty \varphi(k) = \sum_{k = -\infty}^\infty \mathcal{F}\varphi(k) k=φ(k)=k=Fφ(k)
用这个来推导 F Ш \mathcal{F}Ш FШ

&lt; F Ш , φ &gt; = &lt; Ш , F φ &gt; = ∑ k = − ∞ ∞ F φ ( k ) = ∑ k = − ∞ ∞ φ ( k ) = &lt; Ш , φ &gt; &lt;\mathcal{F}Ш,\varphi&gt; = &lt;Ш,\mathcal{F}\varphi&gt; = \sum_{k = -\infty}^\infty\mathcal{F} \varphi(k) = \sum_{k = -\infty}^\infty \varphi(k) = &lt;Ш,\varphi&gt; <FШ,φ>=<Ш,Fφ>=k=Fφ(k)=k=φ(k)=<Ш,φ>
那么 F Ш p = ? \mathcal{F}Ш_p=? FШp=?
Ш p ( x ) = ∑ k = − ∞ ∞ δ ( x − k p ) = ∑ k = − ∞ ∞ δ ( p ( x p ) − k ) = 1 p ∑ k = − ∞ ∞ δ ( x p − k ) = 1 p Ш ( x p ) \begin{aligned} Ш_p(x)&amp;=\sum_{k = -\infty}^\infty \delta(x - kp) = \sum_{k = -\infty}^\infty \delta \left(p\left(\frac{x}{p} \right) -k\right)\\ &amp;=\frac{1}{p} \sum_{k = -\infty}^\infty \delta \left(\frac{x}{p} -k\right) = \frac{1}{p} Ш\left( \frac{x}{p}\right)\end{aligned} Шp(x)=k=δ(xkp)=k=δ(p(px)k)=p1k=δ(pxk)=p1Ш(px)

F Ш p = 1 p F [ Ш ( x p ) ] = 1 p p ( F Ш ) ( p x ) = Ш ( p x ) \mathcal{F}Ш_p= \frac{1}{p}\mathcal{F}\left[Ш\left( \frac{x}{p}\right) \right]=\frac{1}{p} p (\mathcal{F}Ш)(px)=Ш(px) FШp=p1F[Ш(px)]=p1p(FШ)(px)=Ш(px)
Ш ( p x ) = ∑ k = − ∞ ∞ δ ( p x − k ) = 1 p ∑ k = − ∞ ∞ δ ( x − k p ) = 1 p Ш 1 p ( x ) Ш(px) = \sum_{k = -\infty}^\infty \delta(px-k) = \frac{1}{p} \sum_{k = -\infty}^\infty \delta(x - \frac{k}{p})=\frac{1}{p} Ш_{\frac{1}{p} }(x) Ш(px)=k=δ(pxk)=p1k=δ(xpk)=p1Шp1(x)
F Ш p = 1 p Ш 1 p ( x ) \mathcal{F}Ш_p=\frac{1}{p} Ш_{\frac{1}{p} }(x) FШp=p1Шp1(x)

泊松(poison)等式的证明,
∑ k = − ∞ ∞ φ ( k ) = ∑ k = − ∞ ∞ F φ ( k ) \sum_{k = -\infty}^\infty \varphi(k) = \sum_{k = -\infty}^\infty \mathcal{F}\varphi(k) k=φ(k)=k=Fφ(k)
证明:
φ \varphi φ周期延拓(变成周期为1)
Φ ( x ) = ∑ k = − ∞ ∞ φ ( x − k ) \Phi(x) = \sum_{k = -\infty}^\infty \varphi(x - k) Φ(x)=k=φ(xk)
一方面
Φ ( 0 ) = ∑ k = − ∞ ∞ φ ( − k ) = ∑ k = − ∞ ∞ φ ( k ) \Phi(0) = \sum_{k = -\infty}^\infty \varphi( - k) = \sum_{k = -\infty}^\infty \varphi( k) Φ(0)=k=φ(k)=k=φ(k)
另一方面,展开成傅里叶级数
Φ ( x ) = ∑ k = − ∞ ∞ Φ ^ ( k ) e 2 π i k x \Phi(x) = \sum_{k = -\infty}^\infty \widehat{\Phi}(k) e^{2\pi i kx} Φ(x)=k=Φ (k)e2πikx
Φ ^ ( k ) = F φ ( k ) \widehat{\Phi}(k) =\mathcal{F} \varphi(k) Φ (k)=Fφ(k)
Φ ( x ) = ∑ k = − ∞ ∞ F φ ( k ) e 2 π i k x \Phi(x) = \sum_{k = -\infty}^\infty \mathcal{F} \varphi(k) e^{2\pi i kx} Φ(x)=k=Fφ(k)e2πikx
得到
Φ ( 0 ) = ∑ k = − ∞ ∞ F φ ( k ) \Phi(0) = \sum_{k = -\infty}^\infty \mathcal{F} \varphi(k) Φ(0)=k=Fφ(k)
因此poison等式成立

回头来看晶体
ρ p ( x ) = ρ ( x ) ∗ Ш p ( x ) \rho_p(x) = \rho(x) * Ш_p(x) ρp(x)=ρ(x)Шp(x)
F ρ p = ( F ρ ) ( 1 p Ш 1 p ) = 1 p F ρ ( x ) ∑ k = − ∞ ∞ δ ( x − k p ) = 1 p ∑ k = − ∞ ∞ ρ ( x ) δ ( x − k p ) = 1 p ∑ k = − ∞ ∞ ρ ( k p ) δ ( x − k p ) \begin{aligned} \mathcal{F} \rho_p &amp;= \left(\mathcal{F} \mathcal{\rho}\right)\left(\frac{1}{p}Ш_{\frac{1}{p}} \right)\\ &amp;=\frac{1}{p} \mathcal{F} \rho(x) \sum_{k = -\infty}^\infty \delta\left(x -\frac{k}{p} \right)\\ &amp;=\frac{1}{p} \sum_{k = -\infty}^\infty \rho(x) \delta\left(x -\frac{k}{p} \right)\\ &amp;=\frac{1}{p} \sum_{k = -\infty}^\infty \rho \left( \frac{k}{p}\right) \delta\left(x -\frac{k}{p} \right) \end{aligned} Fρp=(Fρ)(p1Шp1)=p1Fρ(x)k=δ(xpk)=p1k=ρ(x)δ(xpk)=p1k=ρ(pk)δ(xpk)
测量这些间隔,它和原子距离成反比

采样于差值 sampling and interpolation

一些性质(关于 Ш Ш Ш
1)采样性质
f ( x ) Ш p ( x ) = ∑ k = − ∞ ∞ f ( k p ) δ ( x − k p ) f(x)Ш_p(x) = \sum_{k = -\infty}^\infty f(kp) \delta(x - kp) f(x)Шp(x)=k=f(kp)δ(xkp)
2)卷积性质
( f ∗ Ш p ) ( x ) = ∑ k = − ∞ ∞ f ( x − k p ) \left(f*Ш_p \right)(x)=\sum_{k = -\infty}^\infty f(x - kp) (fШp)(x)=k=f(xkp)
3)傅里叶变换性质
F Ш p = 1 p Ш 1 p \mathcal{F}Ш_p = \frac{1}{p}Ш_{\frac{1}{p}} FШp=p1Шp1
F − 1 Ш p = 1 p Ш 1 p \mathcal{F}^{-1}Ш_p = \frac{1}{p}Ш_{\frac{1}{p}} F1Шp=p1Шp1

建立内插值问题
我们需要对一组离散数据进行插值,需要一些假设
在相等时间间隔内进行采样,很多种插值的可能(或拟合),拐弯越多,越不可能
一种比较好的方法
假设:把高于某个值的频率去掉,把注意力投向满足这种性质的函数上
对于一个有限带宽函数 f ( t ) f(t) f(t),如果当 ∣ s ∣ &gt; ≥ p / 2 |s|&gt;\ge p/2 s>p/2 , F f ( s ) = 0 \mathcal{F}f(s) = 0 Ff(s=0,对于某个 p p p成立
最小的值 p p p称为带宽(傅里叶变换是对称的)
对于有限带宽信号,可以完全解决内差值问题
根据测量值或采样值就可以得到函数的公式,用 ( t k ) (t_k) (tk)表示采样值, Ш Ш Ш函数的三个性质是推导的基础
如果原函数频谱为带宽 p p p,通过卷积将其周期化
F f ∗ Ш p \mathcal{F} f *Ш_p FfШp
为了得到原函数的变换
Π p ( F f ∗ Ш p ) = F f \Pi_p (\mathcal{F} f *Ш_p ) = \mathcal{F} f Πp(FfШp)=Ff
进行反变换,得
f ( t ) = F − 1 ( Π p ( F f ∗ Ш p ) ) = ( F − 1 Π p ) ∗ F − 1 ( F f ∗ Ш p ) = p &ThinSpace; s i n c ( p t ) ∗ [ ( f ) ( 1 p Ш 1 p ) ] \begin{aligned}f(t) &amp;=\mathcal{F}^{-1} \left( \Pi_p (\mathcal{F} f *Ш_p ) \right)\\ &amp;= (\mathcal{F}^{-1} \Pi_p ) * \mathcal{F}^{-1}(\mathcal{F} f *Ш_p)\\ &amp;=p \,sinc(pt) * \left[(f)\left(\frac{1}{p}Ш_{\frac{1}{p}}\right) \right] \end{aligned} f(t)=F1(Πp(FfШp))=(F1Πp)F1(FfШp)=psinc(pt)[(f)(p1Шp1)]
后面部分
1 p f Ш 1 p ( t ) = 1 p f ( t ) ∑ k = − ∞ ∞ δ ( t − k p ) = 1 p ∑ k = − ∞ ∞ f ( k p ) δ ( t − k p ) \frac{1}{p}fШ_{\frac{1}{p}}(t)=\frac{1}{p} f(t) \sum_{k = -\infty}^\infty\delta \left(t - \frac{k}{p}\right) =\frac{1}{p} \sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right)\delta \left(t - \frac{k}{p}\right) p1fШp1(t)=p1f(t)k=δ(tpk)=p1k=f(pk)δ(tpk)
则得
f ( t ) = p &ThinSpace; s i n c ( p t ) ∗ ( 1 p ∑ k = − ∞ ∞ f ( k p ) δ ( t − k p ) ) = s i n c ( p t ) ∗ ( ∑ k = − ∞ ∞ f ( k p ) δ ( t − k p ) ) = ∑ k = − ∞ ∞ f ( k p ) s i n c ( p t ) ∗ δ ( t − k p ) ( 卷 积 线 性 性 质 ) = ∑ k = − ∞ ∞ f ( k p ) s i n c ( p ( t − k p ) ) = ∑ k = − ∞ ∞ f ( k p ) s i n c ( p t − k ) \begin{aligned}f(t) &amp;= p \,sinc(pt)* \left( \frac{1}{p} \sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right)\delta \left(t - \frac{k}{p}\right) \right)\\ &amp;=sinc(pt)*\left( \sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right)\delta \left(t - \frac{k}{p}\right) \right)\\ &amp;= \sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right)sinc(pt)* \delta \left(t - \frac{k}{p}\right)(卷积线性性质) \\ &amp;=\sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right) sinc\left(p \left(t - \frac{k}{p}\right) \right) \\ &amp;= \sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right) sinc\left(pt - k\right)\end{aligned} f(t)=psinc(pt)(p1k=f(pk)δ(tpk))=sinc(pt)(k=f(pk)δ(tpk))=k=f(pk)sinc(pt)δ(tpk)(线)=k=f(pk)sinc(p(tpk))=k=f(pk)sinc(ptk)

这叫采样定理,也叫香农采样公式(Shannon sampling theorem)或者叫惠特克(Whittaker)采样公式
简单重述一遍
F f ( s ) = 0 , ∣ s ∣ ≥ p 2 \mathcal{F} f(s) = 0,|s| \ge \frac{p}{2} Ff(s)=0,s2p,即可得到
F f = Π p ( F f ∗ Ш p ) \mathcal{F} f =\Pi_p (\mathcal{F} f *Ш_p ) Ff=Πp(FfШp)
f ( t ) = ∑ k = − ∞ ∞ f ( k p ) s i n c ( p t − k ) f(t) = \sum_{k = -\infty}^\infty f\left(\frac{k}{p}\right) sinc\left(pt - k\right) f(t)=k=f(pk)sinc(ptk)
就是说,频域中的周期化,转化成了时域中的采样 k / p k/p k/p为采样点,称 p p p为采样速率
p(每秒采样p次)
可以称为奈奎斯特(Nyquist)速率,p能够改变,仍然成立(p变得更大依然成立),如果p降低,结构就不正确,因为频谱重叠。插值依靠无限点,对于实际应用则采光近似,当然有误差

一个信号不可能同时在频域和时域都受限制,即不可能都是紧集
证明:
F f ( s ) ≡ 0 , ∣ s ∣ ≥ p 2 \mathcal{F} f(s) \equiv 0,|s| \ge \frac{p}{2} Ff(s)0,s2p,那么 f ( t ) ̸ ≡ 0 , ∀ t &gt; ∣ T ∣ f(t) \not{\equiv} 0,\forall t &gt; |T| f(t)̸0,t>T
因为
F f = Π p ( F f ) \mathcal{F} f = \Pi_p (\mathcal{F} f) Ff=Πp(Ff)
f ( t ) = F − 1 F f = p &ThinSpace; s i n c ( p t ) ∗ f ( t ) = p ∫ − ∞ ∞ s i n c ( p t − p x ) f ( x ) d x f(t) = \mathcal{F}^{-1} \mathcal{F} f=p \,sinc (pt) * f(t)\\ = p \int_{-\infty}^\infty sinc(pt - px) f(x) dx f(t)=F1Ff=psinc(pt)f(t)=psinc(ptpx)f(x)dx
因为 s i n c sinc sinc无限长,故不能为0

接下来探讨混叠和插值关系
f ( t ) f(t) f(t)受限, F f ( s ) = 0 , ∣ s ∣ ≥ p / 2 , F f ≡ Π p ( F f ∗ Ш p ) \mathcal{F}f(s) = 0,|s| \ge p/2, \mathcal{F} f \equiv \Pi_p( \mathcal{F} f *Ш_p ) Ff(s)=0,sp/2,FfΠp(FfШp)
如果采样速率 p p p取得太小,可以构造 F f ∗ Ш p \mathcal{F} f *Ш_p FfШp,但会产生重叠
g g g为采样速率过小,得到的原函数
g ( t ) = ∑ k = − ∞ ∞ f ( k p ′ ) s i n c ( p ′ ( t − k p ′ ) ) g(t) = \sum_{k = -\infty}^\infty f\left( \frac{k}{p&#x27;} \right) sinc\left(p&#x27; \left( t - \frac{k}{p&#x27;}\right) \right) g(t)=k=f(pk)sinc(p(tpk))
g g g f f f虽然不相等,但是 g ( k p ′ ) = f ( k p ′ ) g\left( \frac{k}{p&#x27;} \right) = f\left( \frac{k}{p&#x27;} \right) g(pk)=f(pk)
因为
g ( m p ′ ) = ∑ k = − ∞ ∞ f ( k p ′ ) s i n c ( m − k ) g\left(\frac{m}{p&#x27;} \right) = \sum_{k = -\infty}^\infty f\left(\frac{k}{p&#x27;} \right) sinc(m - k) g(pm)=k=f(pk)sinc(mk)

s i n c ( m − k ) = { 0 , &ThinSpace; m ≠ k 1 , &ThinSpace; m = k sinc(m-k)=\begin{cases}0,\,m\ne k\\ 1,\, m = k \end{cases} sinc(mk)={0,m̸=k1,m=k
所以 g ( k p ′ ) = f ( k p ′ ) g\left( \frac{k}{p&#x27;} \right) = f\left( \frac{k}{p&#x27;} \right) g(pk)=f(pk)
g g g f f f的混叠
Example
f ( t ) = cos ⁡ ( 9 π 2 t ) f(t) = \cos(\frac{9\pi}{2} t) f(t)=cos(29πt)
F f = 1 2 ( δ ( s + 9 4 ) + δ ( s − 9 4 ) ) \mathcal{F} f=\frac{1}{2} \left(\delta\left(s +\frac{9}{4} \right)+\delta\left(s -\frac{9}{4} \right) \right) Ff=21(δ(s+49)+δ(s49))
要取 p &gt; 9 2 p&gt;\frac{9}{2} p>29才能 与 Ш p Ш_p Шp卷积不重叠,如果 p p p太小,比如 p = 1 p=1 p=1
那么 Π 1 ( F f ∗ Ш 1 ) = Π 1 ( 1 2 ( δ ( s + 9 4 ) + δ ( s − 9 4 ) ) ∗ Ш 1   ) = 1 2 ( δ ( s + 1 4 ) + δ ( s − 1 4 ) ) \begin{aligned}\Pi_1\left(\mathcal{F}f * Ш_1 \right)&amp;=\Pi_1\left(\frac{1}{2} \left(\delta\left(s +\frac{9}{4} \right)+\delta\left(s -\frac{9}{4} \right) \right) * Ш_1 \ \right)\\ &amp;=\frac{1}{2} \left(\delta\left(s +\frac{1}{4} \right)+\delta\left(s -\frac{1}{4} \right) \right) \end{aligned} Π1(FfШ1)=Π1(21(δ(s+49)+δ(s49))Ш1 )=21(δ(s+41)+δ(s41))
做逆变换 F − 1 Π 1 ( F f ∗ Ш 1 ) = 1 2 F − 1 ( δ ( s + 1 4 ) + δ ( s − 1 4 ) ) = cos ⁡ ( π t 2 ) \begin{aligned} \mathcal{F}^{-1} \Pi_1 \left( \mathcal{F}f * Ш_1 \right) &amp;=\frac{1}{2}\mathcal{F}^{-1} \left(\delta\left(s +\frac{1}{4} \right)+\delta\left(s -\frac{1}{4} \right) \right)\\ &amp;=\cos\left(\frac{\pi t}{2}\right) \end{aligned} F1Π1(FfШ1)=21F1(δ(s+41)+δ(s41))=cos(2πt)
t ∈ Z t\in \mathbb{Z} tZ时, cos ⁡ ( π t 2 ) = cos ⁡ ( 9 4 π t ) \cos\left(\frac{\pi t}{2}\right) = \cos\left(\frac{9}{4}\pi t\right) cos(2πt)=cos(49πt)

音乐上的采样,离散变换

人类大概能听上限为20000Hz的声音。采样频率超过 40000 H z 40000Hz 40000Hz的速率的声音,人就分不出差别。实际上CD的采样速率为 44.1 k H z &gt; 40000 H z 44.1kHz&gt;40000Hz 44.1kHz>40000Hz
混叠(低频成分变成高频成分,高频变低频的重叠)

从连续向离散DFT(离散傅里叶变换)过度
三部分
f ( t ) f(t) f(t)是连续的
1)合理的离散逼近 f ( t ) f(t) f(t)
2)合理的离散啊傅里叶变换
3)找到一种从 f f f的离散形式到傅里叶变换的离散变换
将它建立在采样的"换用"上
做一些假设
f ( t ) f(t) f(t)有限,限制在 0 ≤ t ≤ L 0\le t \le L 0tL
F f ( s ) \mathcal{F}f(s) Ff(s)限制在 0 ≤ s ≤ 2 B 0 \le s \le 2 B 0s2B(之所以是2B而不是B是为了索引方便)
区间外的值忽略不计
为了得到一个可靠的近似(离散近似),以 1 2 B \frac{1}{2B} 2B1的间隔进行采样(频率为2B)
取采样点为 N = 2 B L N = 2BL N=2BL,样本 t 0 = 0 , t 1 = 1 2 B , ⋯ &ThinSpace; , t N − 1 = N − 1 2 B t_0 = 0,t_1 = \frac{1}{2B},\cdots,t_{N-1} = \frac{N-1}{2B} t0=0,t1=2B1,,tN1=2BN1,共N个点
采样结果为
f d i s c r e t e = f ( t ) ∑ k = 0 N − 1 δ ( t − t k ) = ∑ k = 0 N − 1 f ( t k ) δ ( t − t k ) f_{discrete}=f(t) \sum_{k = 0}^{N- 1}\delta(t-t_k)= \sum_{k = 0}^{N- 1} f(t_k)\delta(t-t_k) fdiscrete=f(t)k=0N1δ(ttk)=k=0N1f(tk)δ(ttk)
它的傅里叶变换是
F f d i s c r e t e = ∑ k = 0 N − 1 f ( t k ) e − 2 π i s t k \mathcal{F} f_{discrete} = \sum_{k = 0}^{N- 1}f(t_k) e^{-2\pi i st_k} Ffdiscrete=k=0N1f(tk)e2πistk
仍为连续函数,怎么得到离散点。怎样在频域采样
对频域以 1 L \frac{1}{L} L1的间隔采样,共 2 B L = N 2BL=N 2BL=N个点
s 0 = 0 , s 1 = 1 L , ⋯ &ThinSpace; , s N − 1 = N − 1 L s_0 = 0,s_1 = \frac{1}{L},\cdots, s_{N-1} = \frac{N - 1}{L} s0=0,s1=L1,,sN1=LN1
( F f d i s c r e t e ) ∑ k = 0 N − 1 δ ( s − s k ) = ( ∑ k = 0 N − 1 f ( t k ) e − 2 π i s t k ) ( ∑ k = 0 N − 1 δ ( s − s k ) ) = ∑ k , m = 0 N − 1 f ( t k ) e − 2 π i s m t k δ ( s − s m ) (\mathcal{F} f_{discrete}) \sum_{k = 0}^{N- 1} \delta(s - s_k) = \left(\sum_{k = 0}^{N- 1}f(t_k) e^{-2\pi i st_k}\right)\left( \sum_{k = 0}^{N- 1} \delta(s - s_k) \right)\\ =\sum_{k,m = 0}^{N- 1} f(t_k) e^{-2\pi i s_mt_k} \delta(s - s_m) (Ffdiscrete)k=0N1δ(ssk)=(k=0N1f(tk)e2πistk)(k=0N1δ(ssk))=k,m=0N1f(tk)e2πismtkδ(ssm)
定这些值为
F ( s m ) = ∑ k = 0 N − 1 f ( t k ) e − 2 π i s m t k , m = 0 , ⋯ &ThinSpace; , N − 1 F(s_m)=\sum_{k=0}^{N-1} f(t_k) e^{-2\pi i s_m t_k},m=0,\cdots,N-1 F(sm)=k=0N1f(tk)e2πismtk,m=0,,N1
把这些点,作为 F f \mathcal{F} f Ff的近似,准确来说是 F f d i s c r e t e \mathcal{F} f_{discrete} Ffdiscrete的近似。
它也是连续傅里叶变换的离散形式(积分近似和归一化系数),解释如下
首先依照傅里叶变换 F f ( s ) ∫ 0 L e − 2 π i s t f ( t ) d t \mathcal{F} f(s) \int_0^L e^{-2\pi i st} f(t) dt Ff(s)0Le2πistf(t)dt
也就有
F f ( s m ) ∫ 0 L e − 2 π i s m t f ( t ) d t \mathcal{F} f(s_m) \int_0^L e^{-2\pi i s_mt} f(t) dt Ff(sm)0Le2πismtf(t)dt
利用积分的黎曼和近似
F f ( s m ) = ∫ 0 L e − 2 π i s m t f ( t ) d t ≈ ∑ k = 0 N − 1 f ( t k ) e − 2 π i s m t k Δ t = 1 2 B ∑ k = 0 N − 1 f ( t k ) e − 2 π i s m t k = 1 2 B F ( s m ) \begin{aligned} \mathcal{F} f(s_m) &amp;=\int_0^L e^{-2\pi i s_mt} f(t) dt\approx \sum_{k=0}^{N-1}f(t_k)e^{-2\pi i s_mt_k} \Delta t \\ &amp;= \frac{1}{2B} \sum_{k=0}^{N-1}f(t_k)e^{-2\pi i s_mt_k} = \frac{1}{2B} F(s_m)\end{aligned} Ff(sm)=0Le2πismtf(t)dtk=0N1f(tk)e2πismtkΔt=2B1k=0N1f(tk)e2πismtk=2B1F(sm)

为了方便,用索引代替变量 ,我们记
f = ( f [ 0 ] , ⋯ &ThinSpace; , f [ N − 1 ] ) f = (f[0],\cdots,f[N-1]) f=(f[0],,f[N1])
F = ( F [ 0 ] , ⋯ &ThinSpace; , F [ N − 1 ] ) F=(F[0],\cdots,F[N-1]) F=(F[0],,F[N1])

回顾连续的情况,时域和频域的情况,一个分散,另一个就聚集,反之亦然。在离散的情况,也是类似的。N个抽样点 t 0 , ⋯ &ThinSpace; , t N − 1 t_0,\cdots,t_{N-1} t0,,tN1,间隔为 Δ t \Delta t Δt
同样在时域 s 0 , ⋯ &ThinSpace; , s N − 1 s_0,\cdots,s_{N-1} s0,,sN1间隔为 Δ s \Delta s Δs
{ N Δ t = L N Δ s = 2 B 2 B L = N ⇒ Δ t Δ s = 1 N \begin{cases}N\Delta t = L \\ N\Delta s = 2B\\ 2BL=N \end{cases} \Rightarrow \Delta t \Delta s = \frac{1}{N} NΔt=LNΔs=2B2BL=NΔtΔs=N1
如果采样时确定 Δ t \Delta t Δt N N N,么 Δ s \Delta s Δs也就确定了。即频域的分辨率的精度确定,好坏由 Δ t \Delta t Δt N N N确定
我们让离散情况的公式与连续的情况相似
将展示复指数也源于离散信号(复指数向量)

ω = ( 1 , e 2 π i / N , e 2 π i 2 / N , ⋯ &ThinSpace; , e 2 π i ( N − 1 ) / N ) , ω [ m ] = e 2 π i m / N \omega = (1,e^{2\pi i /N},e^{2\pi i 2/N},\cdots,e^{2\pi i (N-1)/N}),\omega[m] = e^{2\pi i m/N} ω=(1,e2πi/N,e2πi2/N,,e2πi(N1)/N),ω[m]=e2πim/N
定义 ω \omega ω的幂次
ω n = ( 1 , e 2 π i n / N , e 2 π i 2 n / N , ⋯ &ThinSpace; , e 2 π i n ( N − 1 ) / N ) \omega^n = (1,e^{2\pi i n/N},e^{2\pi i 2n/N},\cdots,e^{2\pi i n(N-1)/N}) ωn=(1,e2πin/N,e2πi2n/N,,e2πin(N1)/N)
我们可以把DFT记为
F f [ m ] = ∑ n = 1 N − 1 f [ n ] ω − n [ m ] \mathcal{F} f[m] = \sum_{n = 1}^{N- 1} f[n] \omega^{-n} [m] Ff[m]=n=1N1f[n]ωn[m]
或者
F f = ∑ n = 1 N − 1 f [ n ] ω − n \mathcal{F} f= \sum_{n = 1}^{N- 1} f[n] \omega^{-n} Ff=n=1N1f[n]ωn

有些需要注意
1)输入和输出的周期(后面介绍)
  连续和离散的情况还是要注意的。DFT的定义迫使我们把输入 f f f和输出 F F F不仅作为 0 − N 0-N 0N的离散数值,而是周期为N的离散函数。这是因为 ω \omega ω本身是周期为N的复向量
2)离散复指数的正交性
  如果 k ≠ l k\ne l k̸=l,则 ω k \omega^k ωk ω l \omega^l ωl正交
ω k ⋅ ω l = ∑ n = 0 N − 1 ω k [ n ] ω l [ n ] ‾ = ∑ n = 0 N − 1 e 2 π i k n / N e − 2 π i l n / N = ∑ n = 0 N − 1 e 2 π i ( k − l ) n / N = 1 − ( e 2 π i ( k − l ) / N ) N 1 − e 2 π i ( k − l ) / N = 0 \begin{aligned}\omega^k \cdot \omega^l &amp;= \sum_{n=0}^{N-1}\omega^k[n] \overline{\omega^l[n]}\\ &amp;=\sum_{n=0}^{N-1} e^{2\pi i k n /N} e^{-2\pi i ln/N}\\ &amp;=\sum_{n=0}^{N-1} e^{2\pi i (k - l)n/N}\\ &amp;=\dfrac{1-\left(e^{2\pi i (k - l)/N} \right)^N}{1 - e^{2\pi i (k - l)/N}} \\ &amp;= 0 \end{aligned} ωkωl=n=0N1ωk[n]ωl[n]=n=0N1e2πikn/Ne2πiln/N=n=0N1e2πi(kl)n/N=1e2πi(kl)/N1(e2πi(kl)/N)N=0

∣ ω k ∣ 2 = N |\omega^k|^2=N ωk2=N,不是标准正交的,许多公式引入 N N N 1 N \frac{1}{N} N1就是因为这个

DFT逆变换
F − 1 F = 1 N ∑ n = 0 N − 1 f [ n ] ω n \mathcal{F}^{-1} F = \frac{1}{N} \sum_{n = 0}^{N - 1} f[n] \omega^n F1F=N1n=0N1f[n]ωn

必须证明 F F − 1 f = f , F − 1 F f = f \mathcal{F}\mathcal{F}^{-1} f = f,\mathcal{F}^{-1}\mathcal{F}f = f FF1f=f,F1Ff=f
直接利用对应的公式代入就可以证明

离散傅里叶变换及其性质

将离散和连续的情况联系(不同的地方比相同的要少)
特殊情形
F f [ 0 ] = ∑ n = 0 N − 1 f [ k ] ω − n [ 0 ] = ∑ n = 0 N − 1 f [ k ] \mathcal{F} f[0] = \sum_{n = 0}^{N- 1} f[k] \omega^{-n} [0] = \sum_{n = 0}^{N- 1}f[k] Ff[0]=n=0N1f[k]ωn[0]=n=0N1f[k]
F f ( 0 ) = ∫ − ∞ ∞ f ( t ) d t \mathcal{F} f(0) = \int_{-\infty}^\infty f(t) d t Ff(0)=f(t)dt
两个特殊信号
  一个是 1 = ( 1 , ⋯ &ThinSpace; , 1 ) \mathcal{1}=(1,\cdots,1) 1=(1,,1)
  另一个是离散 δ \delta δ函数 δ 0 = ( 1 , 0 , ⋯ &ThinSpace; , 0 ) \delta_0 = (1,0,\cdots,0) δ0=(1,0,,0), δ k = ( 0 , ⋯ &ThinSpace; , 1 , 0 , ⋯ &ThinSpace; , 1 ) \delta_k = (0,\cdots,1,0,\cdots,1) δk=(0,,1,0,,1)第k个位置为1
F δ 0 = ∑ n = 0 N − 1 δ 0 [ n ] ω − n = ( 1 , 1 , ⋯ &ThinSpace; , 1 ) = 1 \mathcal{F} \delta_0 = \sum_{n = 0}^{N- 1} \delta_0 [n] \omega^{-n} = (1,1,\cdots,1) = \mathcal{1} Fδ0=n=0N1δ0[n]ωn=(1,1,,1)=1
和 连续的情形一样,同样
F δ k = ∑ n = 0 N − 1 δ k [ n ] ω − n = ω − k \mathcal{F} \delta_k = \sum_{n = 0}^{N- 1} \delta_k[n] \omega^{-n}=\omega^{-k} Fδk=n=0N1δk[n]ωn=ωk
F ω k = N δ k \mathcal{F} \omega^k = N\delta_k Fωk=Nδk
和连续的差了一个系数N
从稍微不同的角度了解DFT。将DFT看做一个矩阵矩阵变换,即乘以一个矩阵
F f ] n ] = ∑ n = 0 N − 1 f [ n ] ω − n [ m ] \mathcal{F} f]n] = \sum_{n = 0}^{N- 1} f[n] \omega^{-n} [m] Ff]n]=n=0N1f[n]ωn[m]
写成矩阵形式为
[ F f [ 0 ] F f [ 1 ] ⋮ F f [ N − 1 ] ] = [ 1 1 ⋯ 1 1 &ThinSpace; ω − 1 ⋯ ω − ( N − 1 ) ⋮ ⋮ ⋱ ⋮ 1 ω − ( N 1 ) ⋯ ω − ( N − 1 ) ( N − 1 ) ] [ f [ 0 ] ⋮ f [ N − 1 ] ] \begin{bmatrix} \mathcal{F} f[0]\\\mathcal{F} f[1]\\ \vdots\\\mathcal{F} f[N-1]\\ \end{bmatrix} = \begin{bmatrix} &amp;1 &amp;1 &amp;\cdots &amp;1 \\ &amp;1\, &amp;\omega^{-1} &amp;\cdots &amp;\omega^{-(N-1)} \\ &amp;\vdots &amp;\vdots &amp;\ddots &amp;\vdots \\ &amp;1 &amp;\omega^{-(N_1)} &amp;\cdots &amp;\omega^{-(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} f[0]\\ \vdots \\ f[N-1] \end{bmatrix} Ff[0]Ff[1]Ff[N1]=1111ω1ω(N1)1ω(N1)ω(N1)(N1)f[0]f[N1]
F H F = F F H = N I \mathcal{F}^H \mathcal{F} = \mathcal{F} \mathcal{F} ^H = NI FHF=FFH=NI
所以 F − 1 = 1 N F H \mathcal{F} ^{-1}= \frac{1}{N}\mathcal{F} ^H F1=N1FH
计算需要 O ( N 2 ) O(N^2) O(N2)次运算。有没有更快的算法? 有的,那就是FFT(后面讨论)

讨论DFT的性质
必须考虑DFT 的输入和输出具有周期N,这是由于 ω \omega ω的周期性。因为可以看成一系列 ω \omega ω的次数相加(线性组合),在连续情况下是没有限制的
①周期性简单但有用的结果是索引的独立性(即无需考虑索引),从哪个位置开始都可以
②对偶性,定义反转信号 f − [ n ] = f [ − n ] f^-[n] = f[-n] f[n]=f[n]

F ( f − ) = ( F f ) − \mathcal{F}(f^-) = (\mathcal{F}f)^- F(f)=(Ff)
F F f = N f − \mathcal{F}\mathcal{F}f = Nf^- FFf=Nf
和连续不一样多了个N

FFT(Fast Fourier Transform)的主要思想

事实上存在一系列的FFT,针对不同的问题而设计
时间复杂度的降低 O ( n 2 ) ⟶ O ( n l o g n ) O(n^2) \longrightarrow O(nlogn) O(n2)O(nlogn)
主要发觉DFT矩阵的特征(复指数的特征)
一种精就是将DFT矩阵鞋好吃呢跟另外一种一些列简单矩阵(有许多0)
通过原始公式推导
F f [ m ] = ∑ n = 0 N − 1 f [ n ] ω − n m \mathcal{F} f[m] = \sum_{n = 0}^{N-1} f[n] \omega^{-nm} Ff[m]=n=0N1f[n]ωnm
把和分成奇偶指数形式,是为了将一个N阶DFT写成两个N/2DFT的组合
①假设N为2的幂次(当不是的时候,有一些方法处理,比如0填充)
ω [ p , q ] \omega[p,q] ω[p,q]表示 e 2 π i q / p e^{2\pi i q/p} e2πiq/p
ω [ p , q 1 + q 2 ] = ω [ p , q 1 ] + ω [ p , q 2 ] \omega[p,q_1+q_2]=\omega[p,q_1]+\omega[p,q_2] ω[p,q1+q2]=ω[p,q1]+ω[p,q2]
ω [ N , − n m ] = ω − n m = e − 2 π i n m / N \omega[N,-nm] = \omega^{-nm}=e^{-2\pi i nm/N} ω[N,nm]=ωnm=e2πinm/N
ω [ N 2 , − n m ] = e − 2 π i n m / ( N / 2 ) = ω [ N , − 2 n m ] \omega\left[\frac{N}{2},-nm\right] = e^{-2\pi i n m / (N/2)} = \omega[N,-2nm] ω[2N,nm]=e2πinm/(N/2)=ω[N,2nm]
ω [ N , − ( 2 n + 2 ) m ] = ω [ N , − 2 n m − m ] = ω [ N , − 2 n m ] ω [ N , − m ] = ω [ N 2 , − n m ] ω [ N , − m ] \begin{aligned}\omega[N,-(2n+2)m]&amp;=\omega[N,-2nm-m] \\ &amp;=\omega[N,-2nm]\omega[N,-m] \\ &amp;=\omega\left[\frac{N}{2},-nm\right] \omega[N,-m]\end{aligned} ω[N,(2n+2)m]=ω[N,2nmm]=ω[N,2nm]ω[N,m]=ω[2N,nm]ω[N,m]
把这些代入原公式
F f [ m ] = ∑ n = 0 N − 1 f [ n ] ω [ N , − n m ] = ( e v e n &ThinSpace; p a r t ) + ( o d d &ThinSpace; p a r t ) = ∑ n = 0 N 2 − 1 f [ 2 n ] ω [ N , − 2 n m ] + ∑ n = 0 N 2 − 1 f [ 2 n + 1 ] ω [ N , − ( 2 n + 1 ) m ] = ∑ n = 0 N 2 − 1 f [ 2 n ] ω [ N 2 , − n m ] + ∑ n = 0 N 2 − 1 f [ 2 n + 1 ] ω [ N 2 , − n m ] ω [ N , − m ] ⎵ i n d e p e n d e n t &ThinSpace; o f &ThinSpace; n = ∑ n = 0 N 2 − 1 f [ 2 n ] ω [ N 2 , − n m ] + ω [ N , − m ] ∑ n = 0 N 2 − 1 f [ 2 n + 1 ] ω [ N 2 , − n m ] \begin{aligned}\mathcal{F}f[m] &amp;= \sum_{n = 0} ^{N - 1} f[n] \omega[N,-nm]\\ &amp;=(even\, part) + (odd\, part)\\ &amp;=\sum_{n = 0}^{\frac{N}{2}-1} f[2n] \omega[N,-2nm] +\sum_{n = 0}^{\frac{N}{2}-1} f[2n+1] \omega[N,-(2n+1)m]\\ &amp;=\sum_{n = 0}^{\frac{N}{2}-1} f[2n] \omega\left[\frac{N}{2},-nm\right] + \sum_{n = 0}^{\frac{N}{2}-1} f[2n+1]\omega\left[\frac{N}{2},-nm\right] \underbrace{\omega[N,-m]}_{independent\,of\,n}\\ &amp;=\sum_{n = 0}^{\frac{N}{2}-1}f[2n] \omega\left[\frac{N}{2},-nm\right] + \omega[N,-m]\sum_{n = 0}^{\frac{N}{2}-1} f[2n+1]\omega\left[\frac{N}{2},-nm\right] \end{aligned} Ff[m]=n=0N1f[n]ω[N,nm]=(evenpart)+(oddpart)=n=02N1f[2n]ω[N,2nm]+n=02N1f[2n+1]ω[N,(2n+1)m]=n=02N1f[2n]ω[2N,nm]+n=02N1f[2n+1]ω[2N,nm]independentofn ω[N,m]=n=02N1f[2n]ω[2N,nm]+ω[N,m]n=02N1f[2n+1]ω[2N,nm]
最后式子可以看成两部分分别做傅里叶变换
到这里还不能减少计算量,通过分析发现前 N / 2 N/2 N/2项和后 N / 2 N/2 N/2项重复计算
m ≤ N 2 − 1 m \le \frac{N}{2} - 1 m2N1
F N f [ m ] = F N / 2 f e v e n [ m ] + ω [ N , − m ] F N / 2 f o d d [ m ] \mathcal{F}_N f[m] = \mathcal{F}_{N/2}f_{even}[m] + \omega[N,-m] \mathcal{F}_{N/2} f_{odd}[m] FNf[m]=FN/2feven[m]+ω[N,m]FN/2fodd[m]
m &gt; N 2 − 1 m &gt; \frac{N}{2} - 1 m>2N1,记为 m + N 2 m+\frac{N}{2} m+2N
F N f [ m + N 2 ] = ∑ n = 0 N 2 − 1 f [ 2 n ] ω [ N 2 , − n ( m + N 2 ) ] + ω [ N , − ( m + N 2 ) ] ∑ n = 0 N 2 − 1 f [ 2 n + 1 ] ω [ N 2 , − n ( m + N 2 ) ] \begin{aligned}\mathcal{F}_N f\left[m + \frac{N}{2}\right] &amp;= \sum_{n = 0}^{\frac{N}{2}-1} f[2n] \omega\left[\frac{N}{2} ,-n\left(m+\frac{N}{2}\right) \right] \\ &amp;+\omega\left[N,- \left(m+\frac{N}{2}\right) \right]\sum_{n = 0}^{\frac{N}{2}-1} f[2n+1] \omega\left[\frac{N}{2} ,-n\left(m+\frac{N}{2}\right) \right]\end{aligned} FNf[m+2N]=n=02N1f[2n]ω[2N,n(m+2N)]+ω[N,(m+2N)]n=02N1f[2n+1]ω[2N,n(m+2N)]
而由于 ω [ N 2 , − ( − n N 2 ) ] = 1 \omega \left[\frac{N}{2},-\left(\frac{-nN}{2} \right) \right] = 1 ω[2N,(2nN)]=1,以及
ω [ N , − n ( m + N 2 ) ] = − ω [ N , − m ] \omega\left[N ,-n\left(m+\frac{N}{2}\right) \right] = -\omega[N,-m] ω[N,n(m+2N)]=ω[N,m]
得到
F N f [ m + N 2 ] = ∑ n = 0 N 2 − 1 f [ 2 n ] ω [ N 2 , − n m ] − ω [ N , − m ] ∑ n = 0 N 2 − 1 f [ 2 n + 1 ] [ N 2 , − n m ] \mathcal{F}_N f\left[m + \frac{N}{2}\right] = \sum_{n = 0}^{\frac{N}{2}-1} f[2n] \omega \left[\frac{N}{2},-nm\right]-\omega[N,-m] \sum_{n = 0}^{\frac{N}{2}-1}f[2n+1] \left[\frac{N}{2},-nm\right] FNf[m+2N]=n=02N1f[2n]ω[2N,nm]ω[N,m]n=02N1f[2n+1][2N,nm]
也就是 F N f [ m + N 2 ] = F N / 2 f e v e n [ m ] − ω [ N , − m ] F N / 2 f o d d [ m ] \mathcal{F}_N f\left[m + \frac{N}{2}\right] = \mathcal{F}_{N/2}f_{even}[m] - \omega[N,-m] \mathcal{F}_{N/2} f_{odd}[m] FNf[m+2N]=FN/2feven[m]ω[N,m]FN/2fodd[m]

  • 5
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值