文章目录
一. Flume 安装部署
安装地址:
-
Flume 官网地址:http://flume.apache.org/
安装部署:
本地使用的是CDH 6.3.1 版本,已安装Flume,此处略过安装步骤
二. Flume 入门案例
2.1 监控端口数据官方案例
使用 Flume 监听一个端口,收集该端口数据,并打印到控制台。
2.1.1 安装netcat
安装netcat并检查端口是否被占用
yum -y install nc
-- 查看端口是否被占用
netstat -nlp | grep 44444
2.1.2 创建 Flume Agent 配置文件
在Flume的安装目录下创建conf/lib目录,并创建flume的配置文件
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567
mkdir -p conf/job
cd conf/job
vi flume-netcat-logger.conf
添加内容如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
配置文件 | 含义 |
---|---|
# N a m e t h e c o m p o n e n t s o n t h i s a g e n t \color{red}{\# Name the components on this agent} #Namethecomponentsonthisagent | a1:表示agent的名称 |
a1.sources = r1 | r1:表示a1的source的名称 |
a1.sinks = k1 | k1:表示a1的sink的名称 |
a1.channels = c1 | c1: 表示a1的channel的名称 |
# D e s c r i b e / c o n f i g u r e t h e s o u r c e \color{red}{\# Describe/configure the source} #Describe/configurethesource | |
a1.sources.r1.type = netcat | 表示a1的输入源类型为netcat的端口类型 |
a1.sources.r1.bind = localhost | 表示a1监听的主机 |
a1.sources.r1.port = 44444 | 表示a1监听的端口号 |
# D e s c r i b e t h e s i n k \color{red}{\# Describe the sink} #Describethesink | |
a1.sinks.k1.type = logger | 表示a1输出目的地是控制台logger类型 |
$\color{red}{# Use a channel which buffers events in memory | |
a1.channels.c1.type = memory | 表示a1的channel类型为memory类型 |
a1.channels.c1.capacity = 1000 | 表示a1的channel的总容量1000个event |
a1.channels.c1.transactionCapacity = 100 | 表示a1的channel传输时收集到了100条event以后再去提交事务 |
# B i n d t h e s o u r c e a n d s i n k t o t h e c h a n n e l \color{red}{\# Bind the source and sink to the channel} #Bindthesourceandsinktothechannel | |
a1.sources.r1.channels = c1 | 表示r1和c1连接起来 |
a1.sinks.k1.channel = c1 | 表示k1和c1连接起来 |
2.1.3 先开启 flume 监听端口
第一种写法:
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/
bin/flume-ng agent --conf conf/ --name a1 --conf-file conf/job/flume-netcat-logger.conf - Dflume.root.logger=INFO,console
第二种写法:
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/
bin/flume-ng agent -c conf/ -n a1 -f conf/job/flume-netcat-logger.conf -Dflume.root.logger=INFO,console
参数说明:
–conf/-c:表示配置文件存储在 conf/目录
–name/-n:表示给 agent 起名为 a1
–conf-file/-f:flume 本次启动读取的配置文件是在 job 文件夹下的 flume-telnet.conf
文件。
-Dflume.root.logger=INFO,console :-D 表示 flume 运行时动态修改 flume.root.logger
参数属性值,并将控制台日志打印级别设置为 INFO 级别。日志级别包括:log、info、warn、
error。
2.1.4 开启netcat
nc localhost 44444
2.1.5 在 Flume 监听页面观察接收数据情况
通过nc输入的数据,flume监听页面都接受到了,并且输出到了控制台
2.2 实时监控单个追加文件
实时监控 Hive 日志,并上传到 HDFS 中
2.2.1 创建 flume配置文件
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567/conf/job
vi flume-file-hdfs.conf
注:要想读取 Linux 系统中的文件,就得按照 Linux 命令的规则执行命令。由于 Hive 日志在 Linux 系统中所以读取文件的类型选择:exec 即 execute 执行的意思。表示执行Linux 命令来读取文件。
添加如下内容:
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /tmp/root/hive.log
# Describe the sink
a2.sinks.k2.type = hdfs
a2.sinks.k2.hdfs.path = hdfs://hp1:8020/user/flume/%Y%m%d/%H
#上传文件的前缀
a2.sinks.k2.hdfs.filePrefix = logs-
#是否按照时间滚动文件夹
a2.sinks.k2.hdfs.round = true
#多少时间单位创建一个新的文件夹
a2.sinks.k2.hdfs.roundValue = 1
#重新定义时间单位
a2.sinks.k2.hdfs.roundUnit = hour
#是否使用本地时间戳
a2.sinks.k2.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a2.sinks.k2.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a2.sinks.k2.hdfs.fileType = DataStream
#多久生成一个新的文件
a2.sinks.k2.hdfs.rollInterval = 60
#设置每个文件的滚动大小
a2.sinks.k2.hdfs.rollSize = 134217700
#文件的滚动与Event 数量无关
a2.sinks.k2.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
**注意:**对于所有与时间相关的转义序列,Event Header 中必须存在以 “timestamp”的key(除非 hdfs.useLocalTimeStamp 设置为 true,此方法会使用 TimestampInterceptor 自动添加 timestamp)。
a3.sinks.k3.hdfs.useLocalTimeStamp = true
2.2.2 运行Flume
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567
bin/flume-ng agent --conf conf/ --name a2 --conf-file conf/job/flume-file-hdfs.conf
2.2.3 开启Hive 并操作 Hive 产生日志
从日志可以看到文件已经上传到HDFS:
在HDFS上查看:
1小时自动生产一个目录
1分钟自动生产一个文件
tmp结尾的文件为正在写入的文件,时间到了后就会自动重命名
2.3 实时监控目录下多个新文件
使用 Flume 监听整个目录的文件,并上传至 HDFS
2.3.1 创建配置文件
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567
vi conf/job/flume-dir-hdfs.conf
添加如下内容:
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /tmp/flume/upload
a3.sources.r3.fileSuffix = .COMPLETED
a3.sources.r3.fileHeader = true
#忽略所有以.tmp 结尾的文件,不上传
a3.sources.r3.ignorePattern = ([^ ]*\.tmp)
# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hp1:8020/flume/upload/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
# 重 新 定 义 时 间 单 位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream
#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 60
#设置每个文件的滚动大小大概是 128M
a3.sinks.k3.hdfs.rollSize = 134217700
#文件的滚动与Event 数量无关
a3.sinks.k3.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
2.3.2 启动监控文件夹命令
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567
bin/flume-ng agent --conf conf/ --name a3 --conf-file conf/job/flume-dir-hdfs.conf
2.3.3 查看输出
flume日志:
从日志输出可以看到原目录的 c.txt直接被修改为 c.txt.COMPLETED,然后c.txt上传到一个另外名字的文件,而且从输出可以看到,多个文件的内容会合并上传到一个hdfs上的文件。
hdfs上看输出:
同样是1分钟一个文件,但是有写入才会创建,如果没有写入是不行的。
这个文件把 d.txt e.txt两个文件里的内容放在一起了。
2.4 实时监控目录下的多个追加文件
Exec source 适用于监控一个实时追加的文件,不能实现断点续传;Spooldir Source 适合用于同步新文件,但不适合对实时追加日志的文件进行监听并同步;而 Taildir Source 适合用于监听多个实时追加的文件,并且能够实现断点续传。
案例需求:
使用 Flume 监听整个目录的实时追加文件,并上传至 HDFS 。
2.4.1 创建flume配置文件
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567
vi conf/job/flume-taildir-hdfs.conf
添加如下内容:
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = TAILDIR
a3.sources.r3.positionFile = /tmp/tail_dir.json
a3.sources.r3.filegroups = f1 f2
a3.sources.r3.filegroups.f1 = /tmp/files/.*file.*
a3.sources.r3.filegroups.f2 = /tmp/files2/.*log.*
# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://hp1:8020/user/flume/upload/%Y%m%d/%H
#上传文件的前缀
a3.sinks.k3.hdfs.filePrefix = upload-
#是否按照时间滚动文件夹
a3.sinks.k3.hdfs.round = true
#多少时间单位创建一个新的文件夹
a3.sinks.k3.hdfs.roundValue = 1
#重新定义时间单位
a3.sinks.k3.hdfs.roundUnit = hour
#是否使用本地时间戳
a3.sinks.k3.hdfs.useLocalTimeStamp = true
#积攒多少个 Event 才 flush 到 HDFS 一次
a3.sinks.k3.hdfs.batchSize = 100
#设置文件类型,可支持压缩
a3.sinks.k3.hdfs.fileType = DataStream
#多久生成一个新的文件
a3.sinks.k3.hdfs.rollInterval = 60
#设置每个文件的滚动大小大概是 128M
a3.sinks.k3.hdfs.rollSize = 134217700
#文件的滚动与Event 数量无关
a3.sinks.k3.hdfs.rollCount = 0
# Use a channel which buffers events in memory
a3.channels.c3.type = memory
a3.channels.c3.capacity = 1000
a3.channels.c3.transactionCapacity = 100
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
2.4.2 启动监控文件夹命令
cd /opt/cloudera/parcels/CDH-6.3.1-1.cdh6.3.1.p0.1470567
bin/flume-ng agent --conf conf/ --name a3 --conf-file conf/job/flume-taildir-hdfs.conf
2.4.3 向 files 文件夹中追加内容
cd /tmp/files
echo "this is a test" >> 1.file
echo "aaa " >> 1.file
flume控制台输出:
HDFS查看输出文件:
2.4.4 Taildir 说明
Taildir Source 维护了一个 json 格式的 position File,其会定期的往 position File中更新每个文件读取到的最新的位置,因此能够实现断点续传
[root@hp3 tmp]# more tail_dir.json
[{"inode":102025252,"pos":19,"file":"/tmp/files/1.file"},{"inode":20401118,"pos":8,"file":"/tmp/files2/1.log"}]
[root@hp3 tmp]#
注:
Linux 中储存文件元数据的区域就叫做 inode,每个 inode 都有一个号码,操作系统用 inode 号码来识别不同的文件,Unix/Linux 系统内部不使用文件名,而使用 inode 号码来识别文件。
改名后inode不会发生变化,这点要注意
[root@hp3 20211201]# echo "aaa" > 1.log
[root@hp3 20211201]# ll
总用量 4
-rw-r--r--. 1 root root 4 12月 1 17:32 1.log
[root@hp3 20211201]#
[root@hp3 20211201]# stat 1.log
文件:"1.log"
大小:4 块:8 IO 块:4096 普通文件
设备:fd00h/64768d Inode:34103857 硬链接:1
权限:(0644/-rw-r--r--) Uid:( 0/ root) Gid:( 0/ root)
环境:unconfined_u:object_r:user_tmp_t:s0
最近访问:2021-12-01 17:32:27.255733849 +0800
最近更改:2021-12-01 17:32:27.255733849 +0800
最近改动:2021-12-01 17:32:27.255733849 +0800
创建时间:-
[root@hp3 20211201]#
[root@hp3 20211201]# mv 1.log 2.log
[root@hp3 20211201]# stat 2.log
文件:"2.log"
大小:4 块:8 IO 块:4096 普通文件
设备:fd00h/64768d Inode:34103857 硬链接:1
权限:(0644/-rw-r--r--) Uid:( 0/ root) Gid:( 0/ root)
环境:unconfined_u:object_r:user_tmp_t:s0
最近访问:2021-12-01 17:32:27.255733849 +0800
最近更改:2021-12-01 17:32:27.255733849 +0800
最近改动:2021-12-01 17:32:43.011302080 +0800
创建时间:-
[root@hp3 20211201]#
参考:
- https://flume.apache.org/