大数据学习——Flume入门

本文详细介绍了Flume的基础和高级用法,包括Flume的定义、基础架构,以及快速入门案例,如监控端口数据、实时监控文件等。深入探讨了Flume的事务、Agent内部原理和拓扑结构,还展示了自定义Interceptor、Source和Sink的开发。最后,文中列举了常见的面试题,涵盖了Flume的关键概念和技术要点。
摘要由CSDN通过智能技术生成

一、Flume概述

image-20200731124717587

1.1、Flume定义

Flume是Cloudera(Hadoop的三大发型版本之一公司)提供的一个高可用,高可靠的分布式的海量日志采集、聚合和传输系统。Flume基于流式架构,灵活简单

为什么使用Flume

我们Java后台的日志数据需要使用大数据工具来进行实时分析处理时候,就需要通过Flume来进行流式采集,交给大数据服务器进行分析计算。解决的就是这个实时问题

如果对实时性要求不高的场景也可以选择每天定时上传日志文件到HDFS上,也就用不到Flume。

Flume的主要作用:实时读取服务器本地磁盘的数据,并将数据写入到HDFS!


1.2、Flume基础架构

image-20200731130154510

Flume在服务器运行时,是一个JVM进程(Agent),运行在JVM虚拟机上。以事件(Event)的形式将数据从源头传输到目的地。

三大组件

  • Source:对接外部用于采集日志数据

    image-20200731132417516
  • Channel:作为缓冲区调节Source读取和Sink写出

    image-20200731132640003
  • Sink:对接外部用于写出数据

    image-20200731132533499

以上三个组件在特殊的开发环境下支持自定义!!

Event

是Flume在传输数据的传输单元,以Event的形式将数据从源头传输到目的地。
由两部分构成:

  • Header存放该event的一些属性(KV结构)
  • Body存放传输的数据内容(字节数组)

结构有点类似网络信息传输的包。


二、Flume快速入门

Flume官网地址

Flume全版本下载地址当前最新版本为1.9.0,本次我们学习使用1.7.0版本!

Flume1.7.0用户使用文档

2.1、安装Flume部署

  1. 将压缩包放入/opt/software目录下

  2. 解压到/opt/module目录中

    tar -zxvf /opt/software/apache-hive-1.7.0 -C /opt/module/

  3. 将其目录下conf/目录中flume-env.sh.template改名为flume-env.sh,并进行以下配置

    export JAVA_HOME=/opt/module/jdk1.8.0_251

2.2、入门案例

2.2.1、监控端口数据(官方案例)

案例需求:

使用Flume监听端口(NetCat Source),将端口中传输过来的数据 输出到控制台(Logger Sink)。

步骤实现

  1. 安装netcat工具

    sudo yum install -y nc

    netcat的基本使用

    • 使用nc -lk port开启对端口xxx的持续监听(-lk:listen,keep open)(服务端)

      image-20200731150725559

    • 在另一台主机上使用nc hostname port与对应主机上的端口建立连接(客户端)

    • 然后客户端和服务端就可以相互通信了!!

    • 一旦服务端停止,客户端相继断开。

  2. 判断44444端口是否被占用

    sudo netstat -tunlp | grep 44444

  3. 创建Flume-Agent配置文件 flume-netcat-logger.conf

    在flume的根目录下创建job文件夹,在job文件夹中创建此配置文件。并添加一下内容(官方的配置文件):

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
     a1.sources.r1.type = netcat
    a1.sources.r1.bind = localhost
    a1.sources.r1.port = 44444
    
    # Describe the sink
    a1.sinks.k1.type = logger
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    我们先来解读一下这个配置文件做了些什么=>

    # 第一部分:为名为a1的agent进行组件命名
    sources:r1, sinks:k1, channels:c1
    > 发现组件后都有一个s,可以看出在一个Agent中是可以同时存在多个source、channel、sink的
    
    # 第二部分:配置source相关信息
    r1.type: 名为r1的source通过netcat采集获取数据(监听端口)
    r1.bind: 监听端口的主机名
    r1.port: 监听的端口号
    
    # 第三部分:配置sink
    k1.type: 名为k1的sink通过logger来输出数据(控制台输出)
    
    # 第四部分:配置channel
    c1.type: 名为c1的channel使用memory作为缓冲区(内存缓冲)
    c1.capacity: channel的事件(event)容量
    c1.trancactionCapacity: 传输事务的最大事件(event)容量
    
    # 第五部分:source、sink和channel对接配置
    a1.sources.r1.channels
    a1.sinks.k1.channel
    > source配置项是channels,而sink配置项是channel。下面有图可以查看
    > 这就说明channel是可以接受来自多个source的信息的,一个source的信息也可以写到多个channel中
    > channel的数据也可以供多个sink获取数据写出,**而每个sink只能从一个channel中获取数据写出**
    
    

    以下是官方文档中给出的NetCat Source的配置清单:可对应第二部分的source配置,其他更多参照官方文档

    image-20200731145225334

    以下是官方文档给出的logger sink的配置清单:对应第三部分sink配置

    image-20200731145710309

    channel也不例外,官方文档也有对应的配置清单

    image-20200731150109146


  4. 启动一个Flume-Agent

    bin/flume-ng agent --conf conf --conf-file job/netcat-flume-logger.conf --name a1 -Dflume.root.logger=INFO,console

    • --conf/-c基本配置文件目录
    • --conf-file/-f配置文件名
    • --name/-nagent的名字
    • -Dflume.root.logger=INFO,console将所有INFO日志消息输出到控制台(附加配置)

    或者使用

    bin/flume-ng agent -c conf/ -f job/netcat-flume-logger.conf -n a1 -Dflume.root.logger=INFO,console

    image-20200731153619244

  5. 使用netcat进行连接
    启动agent之后,运行flume进程的主机就相当一个netcat的服务端!

    我们之前的主机名写的是localhost,所以我们连接也只能在本地上连接
    nc localhost 44444,如果要跨主机连接,可以将配置文件中bind主机名改为hadoop102

  6. 测试发送信息

    image-20200731154408566

    可以看到Flume控制台输出的内容确实是以Event为单位,分为headers和body两大部分!!

2.2.2、实时监控单个追加文件

案例需求:

实时监控hive的日志文件(/opt/module/hive-1.2.2/logs/hive.log)

  • exec source
  • memory channel
  • logger sink

实现步骤

  1. 配置文件file-flume-logger.conf

    除了第二部分的source配置需要查看官方文档的配置清单,其他可以完全照抄

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/hive-1.2.2/logs/hive.log
    
    # Describe the sink
    a1.sinks.k1.type = logger
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    

    官方给出的exec source配置清单:

    image-20200731160913017

    官方示例:

    a1.sources = r1
    a1.channels = c1
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /var/log/secure
    a1.sources.r1.channels = c1
    

    tail命令官方的推荐使用-F而非-f两者的区别在于,使用-F时,当文件发生变化导致监控失败,会自动进行尝试重新监控。


  2. 启动flume-agent,开始监控hive.log

    bin/flume-ng agent -c conf/ -f job/file-flume-logger.conf -n a1 -Dflume.root.logger=INFO,console

  3. 启动hive,执行查询,观察flume的控制台输出情况

    首先会读取日志文件的末尾10行,输出到控制台。

    image-20200731161929109

    监控成功!!

2.2.3、监控文件 升级版

将控制台的输出内容转移输出到HDFS上!

  • HDFS sink

准备工作

将以下jar包导入到flume的lib目录下:(这里的Hadoop相关Jar包最好与Hadoop环境版本相同)
image-20200801095311487

配置项解读

查看官方给出的配置清单,HDFS sink在生产环境中使用的频率还是比较高的

除了默认黑体的必须配置以外,以上圈出的都是常用的HDFS sink的配置

来看一个官方给出的配置示例:
image-20200801102852708

HDFS sink的别名大全:
image-20200801103724541

来对这些常用的配置项做一下详细的解读:

  1. 文件前、后缀

    • filePrefix
    • fileSuffix

    在向HDFS写入文件的时候,自定义文件的前后缀,可以使用别名。例如

    a1.sinks.k1.hdfs.filePrefix=%t
    a1.sinks.k1.hdfs.fileSuffix=.log
    
  2. roll文件滚动

    在向HDFS中写入的数据的时候,总不能只向一个文件中写入的吧,当达到一定条件时,需要强制滚动文件(切换到一个新文件),这样=利于数据的分离,避免文件太大影响效率。但是如果配置不当又会导致大量的小文件产生!!

    • rollInterval : 文件滚动之间的时间间隔(默认30s)
    • rollSize: 滚动前,文件大小上限(默认1024kb)
    • rollCount:滚动前 写入事件的最大次数(默认10)

    以上三个配置项,只要满足其一就会进行一次文件滚动!!**三个配置项都可以配置为0,代表不作为判断项。**例如:

    # 每60s滚动一次
    a1.sinks.k1.hdfs.rollInterval=60
    # 文件大小达到128×1024×1024=134217728 实际配置时尽量比这个小!保证一个文件能存放到一个块中 
    a1.sinks.k1.hdfs.rollSize=134217700
    # rollCount不作为判断项,无论多少的Event都不影响
    a1.sinks.k1.hdfs.rollCount=0
    

    可以看到当前的环境下其实使用默认的配置中很容易产生小文件,所以根据业务需求适当配置!!

  3. 批处理写入文件

    batchSize: 当Event数量达到一定值,flush写入到HDFS中。(默认100)

    其实到达一定时间也会被强制刷新写入到HDFS

  4. 文件存储格式和编码解码器

    • codeC:编/解码器(可选:gzip, bzip2, lzo, lzop, snappy)仅当文件格式(fileType)是CompressedStream时配置!!

    • fileType: 文件存储格式(默认SequenceFile,可选:SequenceFileorDataStreamorCompressedStream

  5. 文件夹滚动

    除了之前说的文件需要不断滚动,当我们需要配合使用Hive的分区表的时候,我们也希望定时切换文件夹,例如每天一个文件夹,文件夹下每个小时又分一个文件夹。==如果要使用此功能,必要配置中hdfs.path就不能写死而是使用别名!==否则滚来滚去都是这个文件夹没有效果!!

    • round: 是否开启文件夹滚动(默认为false)需要设置为true才能生效
    • roundValue:滚动的间隔单元(Unit)数(默认1,每过一个Unit滚动一次)
    • roundUnit:滚动的间隔单元单位(默认second,可选:second, minute or hour.)
  6. 使用本地时间戳

    useLocalTimeStamp(默认false,使用header中的时间戳),由于我们现在的header中什么都没有,如果不设置为true,那么所有与时间相关的都不会生效。


实现步骤

  1. Flume配置文件file-flume-hdfs.conf

    # Name the components on this agent
    a1.sources = r1
    a1.sinks = k1
    a1.channels = c1
    
    # Describe/configure the source
    a1.sources.r1.type = exec
    a1.sources.r1.command = tail -F /opt/module/hive-1.2.2/logs/hive.log
    
    # Describe the sink
    a1.sinks.k1.type = hdfs
    a1.sinks.k1.hdfs.path=hdfs://hadoop102:9000/flume/%Y%m%d/%H
    # 文件前缀
    a1.sinks.k1.hdfs.filePrefix=log-
    # 文件夹滚动
    a1.sinks.k1.hdfs.round=true
    a1.sinks.k1.hdfs.roundValue=1
    a1.sinks.k1.hdfs.roundUnit=hour
    # 使用本地时间戳
    a1.sinks.k1.hdfs.useLocalTimeStamp=true
    # 批处理最大数量
    a1.sinks.k1.hdfs.batchSize=1000
    # 文件存储类型
    a1.sinks.k1.hdfs.fileType=DataStream
    # 文件滚动
    a1.sinks.k1.hdfs.rollInterval=60
    a1.sinks.k1.hdfs.rollSize=134217700
    a1.sinks.k1.hdfs.rollCount=0
    
    
    # Use a channel which buffers events in memory
    a1.channels.c1.type = memory
    a1.channels.c1.capacity = 1000
    a1.channels.c1.transactionCapacity = 100
    
    # Bind the source and sink to the channel
    a1.sources.r1.channels = c1
    a1.sinks.k1.channel = c1
    
  2. 启动开始监控

    bin/flume-ng agent -n a1 -c conf/ -f job/file-flume-hdfs.conf

image-20200801113810311

每当日志变化时,在文件滚动的间隔时间内,所有的事件都会被 传输写入到临时文件(.tmp)中!文件滚动时间到达且有新的Event过来就会重新创建文件,之前的临时文件变为持久性文件!如果只是到了滚动时间,而没有Event过来是不会创建文件的!


2.2.4、监控文件夹变化

案例需求

实时监控一个文件夹下的文件添加,并实时同步到HDFS上。

  • Spooling Directory Source
  • HDFS sink

Spooling Directory Source配置清单

image-20200801151944887

  1. 基本配置spoolDir

    写明要监控的文件夹,只能监控文件的个数的增加,但是并不能监测到文件内容的变化!!

  2. fileSuffix:完成同步后添加的文件后缀

    当被监控的目录下的文件被同步到了HDFS上时,会为本地文件系统中的文件加上后缀(默认.COMPLETED

  3. includePattern,ignorePattern文件‘黑白名单’

    使用正则表达式,设置哪些文件同步,哪些不同步。

实现步骤

  1. 创建一个文件夹用于监控(/opt/module/flume-1.7.0/upload)

  2. 配置文件spooldir-flume-hdfs.conf

    修改2.2.3、的配置文件中source部分即可:

    a1.sources.r1.type = spooldir
    a1.sources.r1.spoolDir = /opt/module/flume-1.7.0/upload/
    
  3. 启动

    bin/flume-ng agent -n a1 -c conf/ -f job/spooldir-flume-hdfs.conf

  4. 测试

    启动时upload文件夹下什么都没有,所以HDFS上也没有输出文件。

    • 创建文件test.txt 拷贝到 upload/
      HDFS上出现输出文件,大小和test.txt内容一样! upload/文件夹中的test.txt被加上了COMPLETED后缀!

      image-20200801154309343
    • 测试直接在upload/下创建文件

      也可以正常同步到。但是当同步过后,继续修改文件是同步不到修改的内容的!!!

    • 尝试重复添加同一文件

      image-20200801154714444

      image-20200801154740860

      文件内容被成功上传!!但是文件名并没有被修改,查看flume日志,出现报错

      image-20200801154953225
    • 尝试添加.COMPLETED后缀的文件

      image-20200801155220833

      image-20200801155317429

      HDFS上并没有同步到!!!

  5. 增加配置再次测试

    # 不同步xx.tmp文件
    a1.sources.r1.ignorePattern=([^ ]*\.tmp)
    
    image-20200801162345630

    果然test4.tmp就没有被同步到!!

测试总结

  • 上传的文件,同步输出到HDFS上,只同步文件内容!!
  • 对已上传同步的文件进行修改,修改的内容无法被同步监测到!!
  • 不要多次上传同一文件,会导致文件内容同步成功,但是在修改文件名的时候失败!
  • fileSuffix==尽量选择未使用的后缀,==否则会导致无法被监控到!

2.2.5、断点续传——实时监控目录文件追加修改

案例需求

监控一个或者多个的文件修改,并且支持断点续传

  • Taildir source

Exec Source监控文件变化存在的问题:

  1. 不支持断点续传

    如果生产环境中,Flume挂掉,再次启动的时候只能传输最后10行的数据!!

  2. 正常情况下有数据重复

    每次启动都要将文件的最后10行传输,可能存在数据的重复。

  3. 使用 -c +0每次从文件头扫描监控

    可以解决生产时挂掉导致大部分数据丢失的问题,但是平时使用数据重复率飙升!

  4. 只能监控一个文件

这几个问题就决定了ExecSource不适合用来做文件内容追加修改监控

而使用TailDir,使用了一个positionFile记录上一次传输的位置,即使挂掉,中间的文件修改在重启之后也会被正确传输!
而且可以同时监控多个文件!!

TaildirSource配置清单

image-20200801170006523

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值