求解逆矩阵的常用三种方法

1.待定系数法

矩阵A=
1, 2
-1,-3
假设所求的逆矩阵为
a,b
c,d

这里写图片描述
从而可以得出方程组
a + 2c = 1
b + 2d = 0
-a - 3c = 0
-b - 3d = 1
解得
a=3; b=2; c= -1; d= -1

2.伴随矩阵求逆矩阵

伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。
我们先求出伴随矩阵A*=
-3, -2
1 , 1
接下来,求出矩阵A的行列式|A|
=1*(-3) - (-1)* 2
= -3 + 2
= -1
从而逆矩阵A⁻¹=A*/|A| = A*/(-1)= -A*=
3, 2
-1,-1

在这里插入图片描述

3.初等变换求逆矩阵

(下面我们介绍如何通过初等(行)变换来求逆矩阵)
首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。
1 2 1 0
-1 -3 0 1
然后进行初等行变换。依次进行
第1行加到第2行,得到
1 2 1 0
0 -1 1 1
第2行×2加到第1行,得到
1 0 3 2
0 -1 1 1
第2行×(-1),得到
1 0 3 2
0 1 -1 -1
这里写图片描述

转载自:https://jingyan.baidu.com/article/1709ad8095e1924634c4f03a.html

### 回答1: 对于线性方程组 Ax = b,如果 A 是一个可逆矩阵,那么我们可以使用逆矩阵求解 x 的值,即 x = A⁻¹ b。 下面是具体的求解步骤: 1. 首先出 A 的逆矩阵 A⁻¹。 2. 然后将 b 乘以 A⁻¹,得到 x = A⁻¹ b。 需要注意的是,只有当 A 是一个可逆矩阵时,才能使用逆矩阵求解线性方程组的解。如果 A 不可,那么就无法使用逆矩阵求解,需要使用其他方法求解。 ### 回答2: 逆矩阵是一个非零且可的方阵,使用逆矩阵求解矩阵的解可以通过以下步骤进行: 1. 确定给定矩阵是否可。如果矩阵不可,即没有逆矩阵存在,则无法使用逆矩阵求解。 2. 如果矩阵,使用逆矩阵矩阵转化为单位矩阵。考虑矩阵A,它的逆矩阵为A⁻¹。假设矩阵X是一个未知的解矩阵,满足AX = B,其中B为已知矩阵。将方程两边同时左乘A的逆矩阵,得到X = A⁻¹B。 3. 计算逆矩阵A⁻¹。对于二阶矩阵,A = [a b; c d]的逆矩阵为A⁻¹ = (1/(ad - bc))[d -b; -c a],其中ad - bc不为零。对于更高阶的矩阵逆矩阵的计算涉及到更复杂的方法,如高斯-约旧法等。 4. 得到解矩阵X。将已知矩阵B乘以逆矩阵A⁻¹,得到解矩阵X = A⁻¹B。 总结起来,使用逆矩阵求解矩阵的解可以通过将矩阵左乘逆矩阵,从而将矩阵转化为单位矩阵,并得到解矩阵。需要注意的是,矩阵必须是可的,即存在逆矩阵,才能使用这种方法。 ### 回答3: 逆矩阵是指一个矩阵与其逆矩阵相乘结果为单位矩阵矩阵。在求解线性方程组时,可以利用矩阵得方程组的解。下面是使用逆矩阵求解矩阵的解的一般步骤: 1. 给定一个线性方程组,将其写成矩阵形式Ax = b,其中A是系数矩阵,x是未知向量,b是常数向量。 2. 检查系数矩阵A是否存在逆矩阵,即检查行列式det(A)是否非零。如果det(A) = 0,则无法使用逆矩阵求解。 3. 若det(A) ≠ 0,则系数矩阵A存在逆矩阵A^-1。 4. 对方程组两边同时左乘A的逆矩阵A^-1,得到x = A^-1b。 5. 计算A^-1b的结果,即可得到方程组的解x。 需要注意的是,使用逆矩阵求解矩阵的解的前提是系数矩阵A必须存在逆矩阵。如果行列式det(A)等于零,那么该矩阵是奇异的(不可),无法使用逆矩阵求解。此外,即使det(A)不等于零,也需要谨慎使用逆矩阵法,因为计算逆矩阵的复杂度较高,可能会导致数值计算误差和性能问题。 总之,逆矩阵法是一种求解线性方程组的常用方法,通过找到系数矩阵逆矩阵,将方程组转化为x = A^-1b的形式来求解
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值