基于Python语言的双参数不可压缩Mooney-Rivlin材料模型的参数求解代码

高性能弹性材料由于其特殊的物理性质,在航空、航天、军工等领域得到了广泛的应用。为了合理地设计和应用这些材料,需要建立描述其力学行为的模型。Mooney-Rivlin材料模型是一种常用的可压缩模型,并已经在许多实际应用中证明了其准确性。然而,针对不可压缩高性能弹性材料,传统的Mooney-Rivlin模型无法精确地预测其行为。为了弥补这一缺陷,本文提出了一种基于双参数不可压缩Mooney-Rivlin材料模型的参数求解方法,可以准确地描述高性能弹性材料的弹性行为。

假设已经有一组实验数据,数据结构为$(\epsilon, \sigma)$,其中$\epsilon$是应变,$\sigma$是对应的应力。代码中使用了scipy库中的least_squares函数进行最小二乘法参数求解。

``` python
import numpy as np
from scipy.optimize import least_squares

# Mooney-Rivlin材料模型的定义
def mooney_rivlin(params, epsilon):
    c1, c2 = params
    lambda1 = 1 + epsilon
    lambda2 = np.sqrt((lambda1 ** 2 - 1) / 2)
    sigma = 2 * c1 / (c2 + 1) * (lambda1 - 1 / lambda1 ** 2 - 1 / 3) + 2 * c2 * (lambda2 - 1 / lambda1 - c1 / (3 * c2 * (lambda2 + 1)))
    return sigma

# 最小二乘法参数求解
def mooney_rivlin_fit(epsilon, sigma, init_params):
    def fun(params, epsilon, sigma):
        return mooney_rivlin(params, epsilon) - sigma
    res = least_squares(fun, init_params, args=(epsilon, sigma))
    return res.x

# 示例应用
epsilon = np.array([0.1, 0.2, 0.4, 0.6, 0.8])
sigma = np.array([1.2, 2.3, 4.8, 7.2, 9.5])
init_params = np.array([1, 1])

params = mooney_rivlin_fit(epsilon, sigma, init_params)
print("最优参数:", params)
```

在本代码中,定义了一个mooney_rivlin函数表示Mooney-Rivlin材料模型的表达式,并定义了一个mooney_rivlin_fit函数来进行最小二乘法参数求解。在示例应用中,初始化参数为[1, 1],即 $C_1=C_2=1$ ,通过mooney_rivlin_fit函数对给定的实验数据进行求解,得到最优参数。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值