利用超弹性实验数据进行平面密封模拟(Mooney-Rivlin 超弹性模型)

汽车工业车门上的密封件。密封件是一条长条橡胶,将被建模为平面应变问题。进行了一系列材料测试,包括单轴拉伸试验、双轴拉伸试验和剪切试验。

经过一系列数据拟合试验表明,对于该材料试验数据,双参数“Mooney-Rivlin超弹性模型”拟合数据的效果优于其他模型,决定采用双参数Mooney-Rivlin模型。

本教程中使用的单位制是“美国习惯用单位 (in-lbm-lbf-s)”。

  1. 步骤 1:概述

    • 汽车工业车门上的密封件。密封件是一条长条橡胶,将被建模为平面应变问题。进行了一系列材料测试,包括单轴拉伸试验、双轴拉伸试验和剪切试验。

    • 经过一系列数据拟合试验表明,对于该材料试验数据,双参数“Mooney-Rivlin超弹性模型”拟合数据的效果优于其他模型,决定采用双参数Mooney-Rivlin模型。
  2. 第 2 步:设置

    • 在 ANSYS Workbench 主菜单上拖放静态结构分析:

  3. 步骤3:工程数据(材料模型)

    • 本教程最重要的部分是创建和定义材料数据。

    • 创建一个名为“橡胶”的新材料:

    • 扩展超弹性实验数据,将单轴测试数据、双轴测试数据和剪切测试数据添加到创建的材料模型中:

    • 单轴测试数据参数:

    • 双轴测试数据参数:

    • 剪切试验数据参数:

    • 展开超弹性并将“Mooney-Rivlin 双参数模型”测试数据添加到创建的材料模型中:

    • 选择“曲线拟合”,然后选择“求解曲线拟合”:

    • 再次右键单击“曲线拟合”,并选择“将计算值复制到属性”:

    • 点表示测试数据,线表示“双参数 Mooney-Rivlin 模型”拟合的曲线。

    • 默认材料“结构钢”已用作上钢板和下钢板的材料。
  4. 步骤4:几何(DesignModeler)

    • 在 DesignModeler 上创建的橡胶、上钢板和下钢板的尺寸如下所示:

    • 本教程使用了半模型:

  5. 步骤 5:网格划分操作(默认几何)

    • 已实施元素尺寸为“7.874e-3 in.”的默认网格操作:

  6. 步骤6:接触(无摩擦接触)

    • “无摩擦接触”已用于“上钢板 - 橡胶”和“橡胶 - 下钢板”相互作用,如下所示:

  7. 步骤 7:边界条件

    • 边界条件已实现如下图所示:

    • 由于使用半模型,因此采用“无摩擦支撑”来模拟对称条件:

    • 已使用“固定支撑”来模拟固定端:

    • 上钢板已应用 0.85 英寸的“位移”:

  8. 步骤 8:分析设置

    • 本教程使用了 1000 个子步骤:

  9. 步骤9:结果

    • 最大主应力:

    • 最小主应力:

    • 剪切应力:

    • 最大主弹性应变:

    • 最小主弹性应变:

    • 剪切弹性应变:

    • 力 - 位移图:

Mooney-Rivlin材料模型是一种经典的用于描述非线性粘弹性的材料模型,在工程领域特别是在有限元分析中常用。它主要用于模拟橡胶等复杂材料的行为。在C++语言中实现这个模型,通常会涉及到以下几个步骤: 1. **包含必要的头文件**:首先需要一些数学库,比如Eigen用于矩阵运算,以及处理浮点数的头文件。 ```cpp #include <iostream> #include <Eigen/Dense> ``` 2. **定义常量和系数**:模型通常涉及弹性模量、剪切模量和其他材料参数。 ```cpp const double E1 = 1e6; // 第一主应力的弹性模量 const double E2 = 1e6; // 第二主应力的弹性模量 const double G = 0.5 * (E1 + E2); // 剪切模量 ``` 3. **定义张量操作函数**:对于模型的计算,可能会有张量的加法、乘法等操作。 ```cpp Eigen::Matrix3d deviatoric Stress(const Eigen::Matrix3d& sigma) { return sigma - (sigma.trace() / 3.0) * Eigen::eye(3); } ``` 4. **实现Mooney-Rivlin势函数**:这是模型的核心部分,计算应变能密度函数。 ```cpp double mooney_rivlin_potential(const Eigen::Matrix3d& epsilon) { double I1 = epsilon.trace(); double J2 = deviatoric(epsilon).squaredNorm(); return (2 * mu_1 * J2 + 2 * mu_2 * pow(J2, 2)) / (1 - nu); } ``` 这里`mu_1`, `mu_2`, 和 `nu`是模型参数,分别对应于两个剪切模量和泊松比。 5. **力的计算**:根据势函数导数得到应力张量。 ```cpp Eigen::Matrix3d stress(const Eigen::Matrix3d& epsilon, const Eigen::VectorXd& parameters) { auto dW_dEpsilon = derivative(mooney_rivlin_potential, epsilon); return -dW_dEpsilon; } ``` 6. **完整的示例**(简化版): ```cpp int main() { Eigen::Matrix3d strain = ...; // 应变量 Eigen::VectorXd params = {mu_1, mu_2, nu}; // 材料参数向量 Eigen::Matrix3d stress_result = stress(strain, params); std::cout << "Stress Matrix:\n" << stress_result << std::endl; return 0; } ``` 注意这只是一个基础的实现,实际应用中还需要考虑边界条件、时间步长等因素,并可能需要使用数值求解器或者迭代方法求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法资料吧!

我会继续分享编程资料,学习资料

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值