BZOJ 1016, 最小生成树计数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010576722/article/details/54923097

Problem

传送门

Mean

给定一张简单无向加权图,求其最小生成树方案数。

Analysis

貌似有一个Matrix Tree定理……但是感觉目前不是很学得进东西,所以还是打了dfs。
先跑一遍Kruskal,统计不同权值的边各出现几次。
然后dfs判断某一种权值的边的方案数,累乘即可。
需要注意的是并查集不可以路径压缩,那样会导致连通块合并后无法分开。

Code

#include<cstdio>
#include<algorithm>
using namespace std;
const int N=105,M=1005,MOD=31011;
int n,m,cnt,tot,ans=1,f[N];
struct Edge{
    int a,b,c;
    bool operator < (const Edge &b) const {return c<b.c;}
}e[M],t[M];
int find(int x){return f[x]==x?x:find(f[x]);}
int dfs(int x,int p,int cnt){
    if(p==t[x].b+1) return cnt==t[x].c?1:0;
    int sum=0;
    int a=find(e[p].a),b=find(e[p].b);
    if(a!=b){
        f[a]=b;
        sum+=dfs(x,p+1,cnt+1);
        f[a]=a,f[b]=b;
    }
    return sum+dfs(x,p+1,cnt);
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) f[i]=i;
    for(int i=1;i<=m;i++){scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].c);}
    sort(e+1,e+m+1);
    for(int i=1;i<=m;i++){
        int a=find(e[i].a),b=find(e[i].b);
        if(e[i].c!=e[i-1].c){t[cnt].b=i-1,t[++cnt].a=i;}
        if(a!=b){
            f[a]=b;
            t[cnt].c++,tot++;
        }
    }
    if(tot!=n-1){printf("0");return 0;}
    for(int i=1;i<=n;i++) f[i]=i;
    t[cnt].b=m;
    for(int i=1;i<=cnt;i++){
        (ans*=dfs(i,t[i].a,0))%=MOD;
        for(int j=t[i].a;j<=t[i].b;j++){
            int a=find(e[j].a),b=find(e[j].b);
            if(a!=b) f[a]=b;
        }
    }
    printf("%d",ans);
} 
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页