Problem Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1Sample Output
8
思路:最小生成树计数模版题
Source Program
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<map>
#include<bitset>
#define EPS 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LL long long
#define Pair pair<int,int>
const int MOD = 31011;
const int N = 1000+5;
const int dx[] = {0,0,-1,1,-1,-1,1,1};
const int dy[] = {-1,1,0,0,-1,1,-1,1};
using namespace std;
struct Edge {
int x,y;
int dis;
bool operator < (const Edge &rhs)const{
return dis<rhs.dis;
}
} edge[N];
struct build {
int l,r;
int cnt;
} a[N];
int tot;
int n,m;
int father[N];
int sum;
int Find(int x) {
if(father[x]!=x)
return Find(father[x]);
return father[x];
}
void dfs(int x,int now,int num) {
if(now==a[x].r+1) {
if(num==a[x].cnt)//选指定的条数
sum++;
return ;
}
int fx=Find(edge[now].x);
int fy=Find(edge[now].y);
if(fx!=fy) {//选
father[fx]=fy;
dfs(x,now+1,num+1);
father[fx]=fx;
father[fy]=fy;
}
dfs(x,now+1,num);//不选
}
int Kruskal() {
sort(edge+1,edge+m+1);
for(int i=1; i<=n; i++)
father[i]=i;
int cnt=0;
for(int i=1; i<=m; i++) {
if(edge[i].dis!=edge[i-1].dis) {
tot++;
a[tot].l=i;
a[tot-1].r=i-1;
}
int x=Find(edge[i].x);
int y=Find(edge[i].y);
if(x!=y) {
father[y]=x;
a[tot].cnt++;
cnt++;
}
}
a[tot].r=m;
return cnt;
}
int main() {
scanf("%d%d",&n,&m);
int x,y,z;
for(int i=1; i<=m; i++)
scanf("%d%d%d",&edge[i].x,&edge[i].y,&edge[i].dis);
int num=Kruskal();
if(num!=n-1) {
printf("0");
return 0;
}
else{
for(int i=1; i<=n; i++)
father[i]=i;
int res=1;
for(int i=1; i<=tot; i++) {
sum=0;
dfs(i,a[i].l,0);
res=res*sum%MOD;
for(int j=a[i].l; j<=a[i].r; j++) {
int x=Find(edge[j].x);
int y=Find(edge[j].y);
if(x!=y)
father[y]=x;
}
}
printf("%d",res);
}
return 0;
}