pycharts 数据可视化
Echarts 是一个由百度开源的数据可视化。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
特性
- 简洁的 API 设计,使用如丝滑般流畅,支持链式调用;
- 囊括了 30+ 种常见图表,应有尽有;
- 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab;
- 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架;
- 高度灵活的配置项,可轻松搭配出精美的图表;
- 详细的文档和示例,帮助开发者更快的上手项目;
- 多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持
pycharts库安装
v0.5.x 和 V1 间不兼容,V1 是一个全新的版本。
- V0.5.x
支持 Python2.7,3.4+。0.5.x 版本将不再进行维护。 - V1
仅支持 Python3.6+,新版本系列将从 v1.0.0 开始、。
pip 安装
# 安装 v1 以上版本
$ pip install pyecharts -U
# 如果需要安装 0.5.11 版本的开发者,可以使用
# pip install pyecharts==0.5.11
调用
快速画图
- render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件,也可以传入路径参数,如 bar.render(“mycharts.html”)
- 官网图例代码中图例被封装成函数,函数可以直接调用render画图,func_.render()或者在jupyter中 func_render_notebook()直接展示
#生成 HTML
from pyecharts.charts import Bar
from pyecharts import options as opts
# V1 版本开始支持链式调用
bar = (
Bar()
.add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
.add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
.add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
.set_global_opts(title_opts=opts.TitleOpts(title