pycharts 数据分析与数据可视化


Echarts 是一个由百度开源的数据可视化。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

特性

  • 简洁的 API 设计,使用如丝滑般流畅,支持链式调用;
  • 囊括了 30+ 种常见图表,应有尽有;
  • 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab;
  • 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
  • 高度灵活的配置项,可轻松搭配出精美的图表;
  • 详细的文档和示例,帮助开发者更快的上手项目;
  • 多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持

pycharts库安装

v0.5.x 和 V1 间不兼容,V1 是一个全新的版本。

  • V0.5.x
    支持 Python2.7,3.4+。0.5.x 版本将不再进行维护。
  • V1
    仅支持 Python3.6+,新版本系列将从 v1.0.0 开始、。

pip 安装

# 安装 v1 以上版本
$ pip install pyecharts -U

# 如果需要安装 0.5.11 版本的开发者,可以使用
# pip install pyecharts==0.5.11

调用

pyecharts帮助文档

快速画图

  • render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件,也可以传入路径参数,如 bar.render(“mycharts.html”)
  • 官网图例代码中图例被封装成函数,函数可以直接调用render画图,func_.render()或者在jupyter中 func_render_notebook()直接展示
#生成 HTML
from pyecharts.charts import Bar
from pyecharts import options as opts

# V1 版本开始支持链式调用
bar = (
    Bar()
    .add_xaxis(["衬衫", "毛衣", "领带", "裤子", "风衣", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [114, 55, 27, 101, 125, 27, 105])
    .add_yaxis("商家B", [57, 134, 137, 129, 145, 60, 49])
    .set_global_opts(title_opts=opts.TitleOpts(title
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值