引言
必须再次吐槽一下csdn,同样草稿的情况已经出现两次了,同样是在晚上,同样是连续写了两篇博文,同样是有一篇博文丢失了!!!我猜,被覆盖掉了吧。这样辛辛苦苦写的,一瞬间没有了。肉疼!
因为在证明切比雪夫大数定理的时候会用到切比雪夫不等式,又因为切比雪夫不等式的基础是马尔科夫不等式,所以,本小节主要介绍马尔科夫不等式(切比雪夫不等式是马尔科夫不等式的特殊)。
1.1 马尔科夫不等式与直观感受
马尔科夫不等式是这么写的(本文代数只讨论离散的情况):

其中,
我们通过 的正态分布解释下,首先,
就是指的是曲线下
部分的面积:
注意,如果图片不显示可以参见这里
再来感受一下马尔科夫不等式:
可见,越大于平均值,概率越低。
1.2 马尔科夫不等式与年薪百万
看看这个怎么去计算百万年薪的概率,我们从数学的角度来解答一下,年薪百万难不难?
咱们就用上面的数据近似一下,粗糙的认为:
- 中国人均收入
:51350元
- 人均收入的标准差
:44000元
好,开始我们的计算。根据马尔科夫不等式:
也就是说,最多在20个人中有一个。
全国985院校的录取率是低于 5% 的,看起来似乎基本上能进入985,就能年薪百万(如果我们认为收入和教育程度正相关的话)。
1.3马尔科夫不等式的证明
证明的方式很多,我找了一种我觉得容易理解的方式,不过不是很严格,大家权且当作一种证明思路的说明吧。
试证:
下面的证明虽然是用正态分布来演示的,但是实际是与分布无关的。
之前我们说过,就是指的是曲线下
部分的面积:
要扩大这部分面积很简单,就是让曲线 的部分变得“高”一些,至于
的部分嘛,怎么变化完全没有关系,反正这部分和计算面积没有关系:
很显然,是小于扩大后的面积的。
通过什么数学方式让 的部分变得“高”一些呢?
根据下图:
我们很容易得到:
那问题就很简单了,乘上,
根据期望的定义有:
显然有,因此:
综上,得到要证的目标:
其中,X>0.
本文内容来源:知乎问答,切比雪夫概念
齐活。