python 实现euler modified变形欧拉法算法

euler modified变形欧拉法算法介绍

Euler Modified(改进)变形欧拉法算法,也被称为欧拉修改法或修正欧拉法(Euler Modified Method),是一种用于数值求解微分方程的改进方法。这种方法在传统欧拉法的基础上进行了优化,以减少误差。

基本原理

欧拉法是一种通过逐步逼近来计算函数值的方法,但在某些情况下,传统的欧拉法可能会引入较大的误差。改进的欧拉法通过使用平均斜率来减小误差。其基本思想是:在每个步骤中,首先使用初始点的斜率来估计下一个点的值,然后使用这两个点的平均斜率来计算该点的函数值。这种方法能更好地逼近真实的函数曲线。

计算步骤

  1. 初始化:设定初始条件,包括初始点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),步长ℎ,以及微分方程的表达式 y ′ = f ( x , y ) y′=f(x,y) y=f(x,y)
  2. 预测步骤:使用欧拉法的公式 y p r e d = y n + h ⋅ f ( x n , y n ) y_{pred}=y_n+h⋅f(x_n,y_n) ypred=yn+hf(xn,yn)来预测下一个点的𝑦值,其中 y n y_n yn是当前点的𝑦值,{𝑥_𝑛}是当前点的𝑥值。
  3. 斜率计算:使用预测得到的点 ( x n + 1 , y p r e d ) (x_{n+1},y_{pred}) (xn+1,ypred)和原始点 ( x n , y n ) (x_n,y_n) (xn,yn)来计算两个点的平均斜率 k a v g = f ( x n + 1 , y p r e d ) + f ( x n , y n ) 2 k_{avg}=\frac{f(x_{n+1},y_{pred})+f(x_n,y_n)}{2} kavg=2f(xn+1,ypred)+f(xn,yn)
  4. 校正步骤:使用平均斜率来计算下一个点的𝑦值,即 y n + 1 = y n + h ⋅ k a v g y_{n+1}=y_n+h⋅k_{avg} yn+1=yn+hkavg

优点与缺点

优点:

改进的欧拉法比传统的欧拉法具有更高的精度,因为它使用了平均斜率来减少误差。
它的实现相对简单,计算速度也较快。

缺点:

尽管比传统的欧拉法更精确,但改进的欧拉法仍然是一种一阶方法,其精度可能不足以满足所有需求。对于需要更高精度的应用,可能需要使用更高级的数值方法,如龙格-库塔法(Runge-Kutta methods)。
注意事项

  • 在使用改进的欧拉法时,需要仔细选择步长ℎ,因为步长的大小会直接影响算法的精度和稳定性。
  • 改进的欧拉法适用于求解常微分方程的初值问题,但不适用于所有类型的微分方程。

总的来说,Euler Modified(改进)变形欧拉法算法是一种有效的数值求解微分方程的方法,它在保持计算简单性的同时,提高了传统欧拉法的精度。然而,对于需要更高精度的应用,可能需要考虑其他更高级的数值方法。

euler modified变形欧拉法算法python实现样例

Euler modified (改进)方法是一种数值解微分方程的方法,它在Euler方法的基础上进行了修正,以提高数值解的准确性。下面是使用Python实现Euler modified方法的示例代码:

import numpy as np
import matplotlib.pyplot as plt

def euler_modified(f, t0, tn, y0, h):
    n = int((tn - t0) / h)
    t = np.linspace(t0, tn, n+1)
    y = np.zeros(n+1)
    y[0] = y0
    
    for i in range(n):
        y_star = y[i] + h * f(t[i], y[i])
        y[i+1] = y[i] + h * (f(t[i], y[i]) + f(t[i+1], y_star)) / 2.0
    
    return t, y

# 定义微分方程 dy/dt = f(t, y)
def f(t, y):
    return y * (1 - t)

# 设置初始条件和步长
t0 = 0
tn = 1
y0 = 1
h = 0.1

# 使用Euler modified方法求解微分方程
t, y = euler_modified(f, t0, tn, y0, h)

# 绘制数值解的图像
plt.plot(t, y)
plt.xlabel('t')
plt.ylabel('y')
plt.title('Numerical Solution of dy/dt = y * (1 - t)')
plt.grid(True)
plt.show()

在代码中,首先定义了一个名为euler_modified的函数,它接受微分方程f、积分的起始时间t0、终止时间tn、初始条件y0和步长h作为输入,然后利用Euler modified方法求解微分方程,并返回时间和数值解的数组。

然后定义了一个简单的微分方程f(t, y) = y * (1 - t)作为示例。然后设置初始条件t0=0tn=1y0=1和步长h=0.1。最后调用euler_modified函数得到数值解,并使用matplotlib.pyplot绘制数值解的图像。

  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
隐式欧拉法Python实现如下所示: ```python def implicit_euler(rangee, h, fun, x0, y0): step = int(rangee / h) x = [x0 + [h * i for i in range(step)] u = [y0 + [0 for i in range(step)] v = ["null"] + [0 for i in range(step)] for i in range(step): v[i + 1 = u[i + h * fun(x[i], u[i]) u[i + 1 = u[i + h/2 * (fun(x[i], u[i]) + fun(x[i], v[i + 1])) plt.plot(x, u, label="implicit euler") return u ``` 这段代码中,我们定义了一个函数`implicit_euler`,它接受参数`rangee`表示求解的范围,`h`表示步长,`fun`表示微分方程的函数,`x0`和`y0`表示初始条件。然后我们初始化了一些变量,包括时间步长`step`,自变量`x`和因变量`u`。接下来,我们使用隐式欧拉法的迭代公式进行计算,最后使用`plt.plot`函数绘制出结果,并返回因变量的数组。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Python数值求解微分方程(欧拉法,隐式欧拉)](https://blog.csdn.net/m0_59485658/article/details/126310098)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.268^v1^koosearch"}}] [.reference_item style="max-width: 50%"] - *2* [常微分方程之欧拉法、隐式欧拉法、改进欧拉法以及梯形法的原理](https://blog.csdn.net/liuqihang11/article/details/122203027)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.268^v1^koosearch"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luthane

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值