区间dp(uva10304-Optimal Binary Search Tree)

题意:给一个序列,序列从小到大排序,要把这些树构成一个二叉搜索树。 要求sum = f(e1)*cost(e1) + f(e2)*cost(e2) + ... + f(en)*cost(en),sum值最小。其中f表示数的频率,cost表示数在树种的深度(从0开始)

思路:枚举根节点,设ei为根节点,在序列中ei左边的所有数会构成ei的左子树,ei的右边的所有数会构成ei的右子树,从中选择sum最小的一种方案
设d[i][j]表示序列区间(i, j)的数构成的一棵最优二叉查找树的值,当枚举根节点ek时,它的左子树所有节点的深度都会增加1,那么左子树增加sum[i][k-1],右子树的值也会增加sum[k+1][j]
状态转移方程: dp[i][j] = min{dp[i][k-1]+dp[k+1][j]+sum[j]-sum[i-1]-a[k] | i<=k<=j}

 

/* uva10304
   gaolee  */
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
using namespace std;

const int INF=0x3f3f3f3f;
const int maxn=300;

int dp[maxn][maxn];
int N,a[maxn];
int sum[maxn];

int main()
{
    while(scanf("%d",&N)!=EOF)
    {
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=N;i++)
        {
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
        }

        memset(dp,0,sizeof(dp));
        for(int i=2;i<=N;i++)
        {
            for(int j=1;j+i-1<=N;j++)
            {
                int l=j,r=j+i-1;
                int ans=INF;
                for(int k=l;k<=r;k++)
                    ans=min(dp[l][k-1]+dp[k+1][r]+sum[r]-sum[l-1]-a[k],ans);
                dp[l][r]=ans;
            }
        }
        printf("%d\n",dp[1][N]);
    }
    return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值