离散数学及其应用—— ch4 归纳与递归

本文深入探讨了离散数学中的归纳法和递归概念,包括数学归纳法和强数学归纳法在证明中的应用,以及递归定义的函数和结构。递归在计算几何和程序验证中的重要性被强调,特别是如何利用归纳法的变种进行结构归纳和广义归纳。程序验证通过霍尔三元组和循环不变量确保了程序的正确性。
摘要由CSDN通过智能技术生成
      这章主要介绍了归纳法、递归定义和程序验证三个主题。
    归纳法的引入主要是用于证明这样的命题,它声明某个性质对全体正整数都成立,即“对所有的正整数n,性质P(n)成立”这样一个全称量词。那么基本的归纳法就是“数学归纳法”了,它的证明步骤分为两步,基本步证明P(1)为真;然后在归纳步,对于任意的正整数k,先做归纳假设P(k)为真,然后在这个假设下,证明P(k+1)为真。这样就证明了命题,基本数学归纳法广泛应用于求和公式证明、不等式证明、数论中关于除法重要结论的证明(如带余除法定理)、关于集合的结论、与算法有关的结论、各种智力题的灵活证明等等。而数学归纳法正确性是由“良序性原理”保证的:任何非空的非负整数集合必存在一个最小的元素。稍后可以看到,基本数学归纳法、强数学归纳法以及良序性原理是等价的——可由其中任意一个证明另一个。基本的数学归纳法并不是万能的,仍然存在很多场合,使用基本的数学归纳法根本解决不了问题,于是在此基础上我们引入更强大的工具——强数学归纳法,又叫完备归纳法,它的基本步仍然证明P(1)为真,但是在归纳步,强数学归纳法假设P(1),P(2)……P(k)同时为真的情况下证明P(k+1)为真,不过该形式有其他的变种࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值