Search in Rotated Sorted Arrays ||
问题描述:
Follow up for “Search in Rotated Sorted Array”:
What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).
Write a function to determine if a given target is in the array.
The array may contain duplicates.
分析:
分析:
这道题是二分查找Search Insert Position的变体,以下是Search in Rotated Sorted Array的解决思路:
给定排好序列的一个数组[0 1 2 3 4 5 6 7]可能存在的旋转有一下7种情况:
[ 0 1 2 4 5 6 7 ]
[ 7 0 1 2 4 5 6 ]
[ 6 7 0 1 2 4 5 ]
[ 5 6 7 0 1 2 4 ]
[ 4 5 6 7 0 1 2 ]
[ 2 4 5 6 7 0 1 ]
[ 1 2 4 5 6 7 0 ]
采用二分法对于给定的target进行查找,使用二分法确定mid后,判断要搜索左半段还是右半段,
(1)如果target==nums[mid],那么mid就是我们要的结果,直接返回;
(2)如果nums[mid] < nums[last],那么说明右半段一定是有序的(没有受到rotate的影响),那么我们只需要判断target是不是右半段,如果是则把左边缘移到mid+1,否则就target在左半段,即把右边缘移到mid;
(3)如果nums[mid]>=nums[last],那么说明从左半段一定是有序的,同样只需要判断target是否在这个范围内,相应的移动边缘即可
和Search in Rotated Sorted Array唯一的区别是这道题目中元素会有重复的情况出现。原来是依靠中间和边缘元素的大小关系,来判断哪一半是不受rotate影响,仍然有序的。而现在因为重复的出现,如果我们遇到中间和边缘相等的情况,我们就丢失了哪边有序的信息,因为哪边都有可能是有序的结果。假设原数组是{1,2,3,3,3,3,3},那么旋转之后有可能是{3,3,3,3,3,1,2},或者{3,1,2,3,3,3,3},这样的我们判断左边缘和中心的时候都是3,如果我们要寻找1或者2,我们并不知道应该跳向哪一半。解决的办法只能是对边缘移动一步,直到边缘和中间不在相等或者相遇,这就导致了会有不能切去一半的可能。所以最坏情况(比如全部都是一个元素,或者只有一个元素不同于其他元素,而他就在最后一个)就会出现每次移动一步,总共是n步,算法的时间复杂度变成O(n)。
C++代码:
class Solution {
public:
bool search(vector<int>& nums, int target) {
int first = 0, last = nums.size();
while (first != last){
const int mid = first + (last - last) / 2;
if (nums[mid] == target)
return true;
if (nums[first] < nums[mid]){
if (nums[first] <= target && nums[mid] > target)
last = mid;
else
first = mid + 1;
}
else if (nums[first] > nums[mid]){
if (nums[mid] < target && nums[last - 1] >= target)
first = mid + 1;
else
last = mid;
}
else
first++;
}
return false;
}
};
Python代码:
class Solution(object):
def search(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: bool
"""
start, end = 0, len(nums) - 1
while start + 1 < end:
mid = start + (end - start) / 2
if nums[mid] == target:
return True
if nums[start] < nums[mid]:
if nums[start] <= target <= nums[mid]:
end = mid
else:
start = mid
elif nums[start] > nums[mid]:
if nums[mid] <= target <= nums[end]:
start = mid
else:
end = mid
else:
start += 1
if nums[start] == target:
return True
if nums[end] == target:
return True
return False