pandas中的get_dummies方法

本文详细介绍了Pandas中get_dummies方法的使用,包括参数解释、应用场景及如何处理离散特征编码。get_dummies方法可以将分类变量转换为one-hot编码,适用于颜色等无序类别,或对大小有意义的类别进行数值映射。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:https://blog.csdn.net/u010665216/article/details/78635664?utm_source=copy
https://blog.csdn.net/lujiandong1/article/details/52836051

pandas中有一种get_dummies的方法:

pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False)

参数说明:

data : array-like, Series, or DataFrame
输入的数据
prefix : string, list of strings, or dict of strings, default None
get_dummies转换后,列名的前缀
columns : list-like, default None
指定需要实现类别转换的列名
dummy_na : bool, default False
增加一列表示空缺值,如果False就忽略空缺值
drop_first : bool, default False
获得k中的k-1个类别值,去除第一个

离散特征的编码分为两种情况:

1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码

2、离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3}

在这里插入图片描述

`pandas.get_dummies()` 是一个用于执行独热编码(One-Hot Encoding)的方法,它将分类变量转换成一系列二进制列,每一列表示原始类别的一个可能取值。这个函数主要用于处理具有离散类别的数据。 以下是`pandas.get_dummies` 函数的一些关键参数和用法: 1. **data**: 通常是一个包含分类特征的数据框(DataFrame)。 ```python df = pd.DataFrame([['green' , 'A'], ['red' , 'B'], ['blue' , 'A']]) df.columns = ['color', 'class'] ``` 2. **prefix**: 可选,用于创建新列名称的前缀,默认情况下为原列名加上下划线。 ```python prefix = 'category_' pd.get_dummies(df, prefix=prefix) ``` 3. **prefix_sep**: 可选,指定前缀与列名之间的分隔符,默认为 '_'. 4. **dummy_na**: 是否为缺失值创建额外的虚拟列,默认为 `False`。如果设置为 `True`,会为 `NaN` 创建一个新的虚拟列。 5. **columns**: 如果给定,只对这些列应用独热编码。 6. **sparse**: 如果 `True`,返回一个稀疏矩阵,适用于大型数据集,但可能导致内存占用增加。默认为 `False`。 7. **drop_first**: 如果 `True`,对于多级分类,在每个级别内只保留一个虚拟列,第一个遇到的,其余的会被丢弃。默认为 `False`。 举例来说,假设我们有颜色和类别两列,我们可以这样应用独热编码: ```python df = pd.get_dummies(df, columns=['color']) ``` 这将创建新的列如 `color_green`, `color_red`, 和 `color_blue`,对应于原始数据的颜色。 参考文档:[Pandas get_dummies官方文档](https://pandas.pydata.org/docs/reference/api/pandas.get_dummies.html)[^1]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值