Leetcode- 241.Different Ways to Add Parentheses

Problem Description :
Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *.
Example 1
Input: “2-1-1”.

((2-1)-1) = 0
(2-(1-1)) = 2
Output: [0, 2]

Example 2
Input: “2*3-4*5”

(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10
Output: [-34, -14, -10, -10, 10]


Analysis:
It’s easy to think recursively using divide and conquer method to solve the problem:

vector<int> diffWaysToCompute(string input) {
        vector<int> res;
        int n = input.size();
        for (int i = 0; i < n; i++ )
        {
            char c = input[i];
            if (ispunct(c)){
                 // Split input string into two parts and solve them recursively
                vector<int> res1 = diffWaysToCompute(input.substr(0, i));
                vector<int> res2 = diffWaysToCompute(input.substr(i+1));
            for (auto op1 : res1)
                for (auto op2 : res2){
                    if (c == '+')
                        res.push_back(op1 + op2);
                    else if (c == '-')
                        res.push_back(op1 - op2);
                    else 
                        res.push_back(op1 * op2);
                }
            }
        }
            if (res.empty()) 
                //res.push_back(atoi(input.c_str());
                res.push_back(stoi(input));
            return res;
    }

Since there are lots of repeated subproblem, so we can use memo to record the result which we computed.

Memorization (top - down solution):

vector<int> diffWaysToCompute(string input) 
{
    unordered_map <string, vector<int> > memo;
    return Compute(memo, input);
}

vector<int> Compute(unordered_map<string, vector<int> > & memo, string input)
{
    vector<int> res;
    for (int i = 0; i < input.size(); ++i)
    {
        vector<int> res1, res2;
        if (ispunct(input[i]))
        {
        string left = input.substr(0, i);
        if (memo[left].size() > 0) 
             res1 = memo[left];
        else 
             res1 = Compute(memo, left);
        string right = input.substr(i + 1);
        if (memo[right].size() > 0)
            res2 = memo[right];
        else 
            res2 = Compute(memo, right);
        for (auto r1 : res1)
            for (auto r2 : res2)
            {
                if (input[i] == '+')
                    res.push_back(r1 + r2);
                else if (input[i] == '-')
                    res.push_back(r1 - r2);
                else res.push_back(r1 * r2);
            }
        }
    }
    if (res.empty())
        res.push_back(stoi(input));
    memo[input] = res;
    return res;
}

We also can think it bottom up, using DP to solve it.
DP[i][j]means the result between operand i and operand j, Moreover we need to store the operators correspondingly

 vector<int> diffWaysToCompute(string input) {
    vector<int> data;
    vector<char> ops;
    int num = 0;
    char op = ' ';
    istringstream ss(input + "+");//add extra '+';
    while(ss >> num && ss >> op){
        data.push_back(num);
        ops.push_back(op);
    }
    const int size = data.size();
    vector< vector<vector<int> > > dp(size, vector<vector<int> >(size, vector<int>()));
    for (int i = 0; i < size; i += 1)
        for (int j = i; j >= 0; j -= 1){
            if(i == j) {dp[j][i].push_back(data[i]); continue;}
            for (int k = j; k < i; k += 1){
                for (auto left : dp[j][k])
                    for (auto right : dp[k+1][i]){
                        int val = 0;
                       switch(ops[k]){
                         case '+': val = left + right; break;
                       case '-': val = left - right; break;
                       case '*': val = left * right; break;
                        }
                         dp[j][i].push_back(val);
                    }
            }

        }
        return dp[0][size-1];
   }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值