第一,读取数据进行画点图分布
数据:第一列为速度,第二列为统计统计个数;在做航空出现识别时选择了出行速度大于等于80的,简单的R代码查看一下不同速度的出现频次;这里很容易看出有两个峰值。
80 86
81 180
82 152
83 131
84 149
85 149
86 169
87 165
88 170
89 166
90 180
91 155
92 170
93 146
94 160
95 153
96 133
97 134
98 160
99 154
100 161
101 144
102 155
103 142
104 132
105 154
106 132
107 137
108 111
109 138
110 124
111 110
112 113
113 107
114 109
115 95
116 101
117 100
118 108
119 92
120 96
121 90
122 91
123 67
124 81
125 88
126 76
127 87
128 60
129 79
130 64
131 59
132 57
133 71
134 66
135 47
136 44
137 52
138 59
139 60
140 58
141 53
142 52
143 53
144 49
145 48
146 54
147 111
148 122
149 48
150 52
151 41
152 41
153 32
154 40
155 39
156 34
157 34
158 24
159 30
160 31
161 18
162 26
163 22
164 24
165 30
166 28
167 29
168 29
169 13
170 13
171 25
172 35
173 19
174 26
175 17
176 26
177 27
178 27
179 16
180 14
181 23
182 22
183 40
184 28
185 22
186 40
187 31
188 35
189 26
190 31
191 36
192 39
193 35
194 36
195 51
196 40
197 36
198 42
199 49
200 47
201 42
202 52
203 48
204 48
205 46
206 50
207 49
208 52
209 41
210 44
211 36
212 28
213 41
214 25
215 24
216 30
217 32
218 28
219 25
220 20
221 17
222 23
223 25
224 17
225 13
226 14
227 15
228 16
229 11
230 15
231 6
232 6
233 6
234 10
235 3
236 2
237 3
238 6
239 4
240 1
241 2
242 1
243 1
244 1
245 3
247 3
248 1
249 2
250 3
251 1
252 1
254 3
255 2
256 4
258 2
260 2
261 1
263 1
265 1
267 2
268 2
270 1
271 1
272 2
273 1
274 2
281 2
282 1
285 2
286 2
287 2
288 2
290 1
292 2
293 1
294 1
295 1
297 1
298 1
301 2
302 1
303 2
308 1
309 3
311 1
316 1
320 1
321 1
323 1
324 1
325 1
327 2
328 1
329 1
330 2
331 3
334 1
338 1
341 1
343 1
344 2
346 2
349 1
350 1
352 1
353 3
356 1
357 2
365 1
366 1
367 1
375 2
376 1
379 1
382 2
383 1
384 1
385 1
387 1
388 1
390 1
393 1
394 1
395 1
401 1
403 2
404 2
406 1
407 1
408 1
409 1
410 2
412 1
413 2
416 1
417 1
419 1
424 1
431 1
436 1
437 2
441 1
443 1
444 2
446 1
447 1
448 1
452 1
458 1
459 1
461 1
465 1
472 2
481 1
482 2
487 1
491 2
492 1
505 1
509 1
520 1
523 1
529 1
550 1
601 1
###简单代码
#数据文件为cl.txt,放在桌面mlib文件夹下
setwd("C:\\Users\\Administrator\\Desktop\\mlib") #在Rshell内切换目录
dt<-read.table("cl.txt",sep = "\t", header=F, na.strings=c("NA")) #读取数据指定分隔符问tab键
x=t(dt[1]) #读取第一列为x
y=t(dt[2]) #读取第二列为y
plot(x,y,type="o",xlab="飞机出行速度",ylab="统计个数",col="red",main="飞机出行速度于统计个数的点图分布",pch=c(15))
第二,读取数据进行画三维分布图
数据:数据总的是三列,这是我对用户的消费数据进行降维之后的数据,主要是想看看在三维空间是否有什么特点;这里就截图部分数据做实例。
-0.8819053100835638,0.0862277212421054,0.5177481338086878
-0.14267850753919384,-0.8050142881254965,0.4564901874736695
-0.5362667170989152,-0.5976659459606504,-0.0392822128880989
-0.6138190007804859,-1.285756921128074,0.11607335832551399
-1.0383519214779957,0.4097967381350299,0.5143838133867025
-1.3501504813486307,-0.38531008394634714,0.5370391996403736
-0.4237536048880216,0.02834907066829289,-0.174017982507566
-0.23020635925917476,-0.9875281829630651,0.5354855788601134
-0.3875769209885279,-0.01693879336499235,-0.047071455837307
-1.1477106161089388,-1.181602071986772,0.5986060037817263
-0.4136565872566163,-0.10288291053839643,-0.003479609873332
-0.15049714470958858,-0.36845154458759355,0.181814936701418
-0.3672146127509533,-0.3883759646016256,0.16630197214622552
-0.21619754607785607,0.06784723956187899,-0.203962929652757
-0.2827220991874007,-0.1572539544730051,0.04729691729877644
-1.0156035493400475,-0.24903303509291067,0.3238822930740880
-1.0525291925543592,-0.28517062238653323,-0.459136711222855
-1.3389147440606317,-0.5992107641853137,-0.655300686062208
-0.8319962900413453,-0.2081640081719457,-0.3672531888430958
-0.5832016171938044,-0.06931420411865748,0.3842888261355958
###代码很简单
setwd("C:\\Users\\Administrator\\Desktop\\mlib")
dt<-read.table("new.txt",sep = ",", header=F, na.strings=c("NA"))
library(rgl)
data(dt)
attach(dt)
plot3d(V1,V2,V3,col=rainbow(12),size=50)