A100、H100 和 V100s 是 NVIDIA 不同代的高性能 GPU,主要用于深度学习、AI 训练和推理。以下是它们的详细对比:
规格对比 | V100s (Volta) | A100 (Ampere) | H100 (Hopper) |
---|---|---|---|
架构 | Volta | Ampere | Hopper |
制程工艺 | 12nm | 7nm | 4nm |
CUDA 核心数 | 5120 | 6912 | 16896 |
Tensor 核心数 | 640 | 432 | 528 |
显存 | 32GB HBM2 | 40GB/80GB HBM2e | 80GB HBM3 |
显存带宽 | 1134 GB/s | 1555 GB/s | 3000 GB/s |
FP32 性能 | 16.4 TFLOPS | 19.5 TFLOPS | 60 TFLOPS |
TF32 性能 | - | 156 TFLOPS | 300 TFLOPS |
FP16 性能 | 125 TFLOPS | 312 TFLOPS | 990 TFLOPS |
INT8 性能 | 250 TOPS | 624 TOPS | 1980 TOPS |
NVLink 代数 | 2nd Gen (300GB/s) | 3rd Gen (600GB/s) | 4th Gen (900GB/s) |
TDP 功耗 | 250W | 400W | 700W |
PCIe 版本 | PCIe 3.0 | PCIe 4.0 | PCIe 5.0 |
关键对比解析
-
算力:
- V100s 是最老的,算力最低,适用于早期 AI 训练或推理任务。
- A100 进行了 Tensor Core 计算优化,FP16 和 INT8 计算能力大幅提升。
- H100 采用了全新 Hopper 架构,CUDA 核心数是 A100 的 2.4 倍,算力翻倍。
-
显存 & 带宽:
- V100s 使用 HBM2,带宽 1134GB/s,最弱。
- A100 升级到 HBM2e,80GB 版本带宽 1555GB/s。
- H100 采用 HBM3,带宽高达 3000GB/s,大幅提升数据吞吐能力,适合 LLM(大模型训练)。
-
功耗 & 效能比:
- H100 功耗最高(700W),但每瓦性能大幅提升,适合超大规模 AI 训练。
- A100 兼顾性能和功耗,是目前应用最广泛的 AI GPU。
- V100s 在能耗比上远不如 A100 和 H100,更适用于过时任务或小规模推理。
-
适用场景:
- V100s:适用于传统 AI 推理任务,已经逐渐淘汰。
- A100:深度学习训练和推理的主流选择,性价比高。
- H100:专为 LLM(大语言模型)和超大规模 AI 训练设计,适用于 GPT-4、DeepSeek 等大模型。
结论
- 如果预算有限,A100 是当前主流 AI 训练/推理的最佳选择。
- 如果需要更强算力,大规模训练 LLM,H100 是未来趋势,但价格昂贵。
- V100s 已经过时,主要受限于带宽和算力,不建议新项目采用。
如果你是做 RAG、大模型推理或 AI 训练,A100 够用,H100 更强,但价格高昂,适合超大规模企业级部署。
关注微信公众号「云馨AI」,回复「微信群」,
无论你是AI爱好者还是初学者,这里都能为你打开AI世界的大门!加入我们,与志同道合的朋友一起探索AI的无限可能,共同拥抱智能未来!