【云馨AI-大模型】显卡对比A100、H100 和 V100s

A100、H100 和 V100s 是 NVIDIA 不同代的高性能 GPU,主要用于深度学习、AI 训练和推理。以下是它们的详细对比:

规格对比V100s (Volta)A100 (Ampere)H100 (Hopper)
架构VoltaAmpereHopper
制程工艺12nm7nm4nm
CUDA 核心数5120691216896
Tensor 核心数640432528
显存32GB HBM240GB/80GB HBM2e80GB HBM3
显存带宽1134 GB/s1555 GB/s3000 GB/s
FP32 性能16.4 TFLOPS19.5 TFLOPS60 TFLOPS
TF32 性能-156 TFLOPS300 TFLOPS
FP16 性能125 TFLOPS312 TFLOPS990 TFLOPS
INT8 性能250 TOPS624 TOPS1980 TOPS
NVLink 代数2nd Gen (300GB/s)3rd Gen (600GB/s)4th Gen (900GB/s)
TDP 功耗250W400W700W
PCIe 版本PCIe 3.0PCIe 4.0PCIe 5.0

关键对比解析

  1. 算力

    • V100s 是最老的,算力最低,适用于早期 AI 训练或推理任务。
    • A100 进行了 Tensor Core 计算优化,FP16 和 INT8 计算能力大幅提升。
    • H100 采用了全新 Hopper 架构,CUDA 核心数是 A100 的 2.4 倍,算力翻倍。
  2. 显存 & 带宽

    • V100s 使用 HBM2,带宽 1134GB/s,最弱。
    • A100 升级到 HBM2e,80GB 版本带宽 1555GB/s。
    • H100 采用 HBM3,带宽高达 3000GB/s,大幅提升数据吞吐能力,适合 LLM(大模型训练)。
  3. 功耗 & 效能比

    • H100 功耗最高(700W),但每瓦性能大幅提升,适合超大规模 AI 训练。
    • A100 兼顾性能和功耗,是目前应用最广泛的 AI GPU。
    • V100s 在能耗比上远不如 A100 和 H100,更适用于过时任务或小规模推理。
  4. 适用场景

    • V100s:适用于传统 AI 推理任务,已经逐渐淘汰。
    • A100:深度学习训练和推理的主流选择,性价比高。
    • H100:专为 LLM(大语言模型)和超大规模 AI 训练设计,适用于 GPT-4、DeepSeek 等大模型。

结论

  • 如果预算有限,A100 是当前主流 AI 训练/推理的最佳选择。
  • 如果需要更强算力,大规模训练 LLM,H100 是未来趋势,但价格昂贵。
  • V100s 已经过时,主要受限于带宽和算力,不建议新项目采用。

如果你是做 RAG、大模型推理或 AI 训练,A100 够用,H100 更强,但价格高昂,适合超大规模企业级部署。

关注微信公众号「云馨AI」,回复「微信群」,
无论你是AI爱好者还是初学者,这里都能为你打开AI世界的大门!加入我们,与志同道合的朋友一起探索AI的无限可能,共同拥抱智能未来!

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rundreamsFly

达者不再兼济天下,却怪穷者独善

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值