为什么CNN需要固定输入图像的尺寸(CNN图像尺寸输入限制问题)

本文探讨了CNN中卷积层对输入尺寸无特定限制,而全连接层因需固定输入大小,导致输入图像必须预处理到特定尺寸,以保持网络结构稳定,实现有效参数训练。
摘要由CSDN通过智能技术生成

通过CNN组成(卷积层和全连接层)进行分析。
(1)卷积层
  卷积层对于图像是没有尺寸限制要求的。输入图像是28*28,卷积仅于自身的卷积核大小,维度有关,输入向量大小对其无影响(如第一层卷积,输入图像的大小和维度)。

# 输入图像
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, 
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值